НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ  







Народы мира    Растения    Лесоводство    Животные    Птицы    Рыбы    Беспозвоночные   

предыдущая главасодержаниеследующая глава

Позывные стихии

Поскольку истинные причины "подземных бурь" сегодня еще до конца не известны ученым, приходится идти самым невыгодным путем: наблюдать происходящие землетрясения, изучать события и явления, им предшествующие, и устанавливать связь между ними и самими землетрясениями, т. е. вести поиск предвестников.

А что следует понимать под предвестниками? В самом общем смысле - это необычные, аномальные явления, которые можно заметить и зарегистрировать перед землетрясением.

Несмотря на отдельные важные наблюдения, проведенные учеными Японии и других стран, за первую половину XX века убедительных свидетельств о существовании предвестников "подземных бурь" не было. Решительный перелом в развитии проблемы прогноза землетрясений произошел в 60-х годах. В 1964-1965 гг. по инициативе и под непосредственным руководством академика М. А. Садовского были организованы комплексные исследования предвестников: от создания прогностических полигонов до разработки физических основ и моделей процессов разрушений больших горных масс.

Целенаправленный поиск предвестников "подземных бурь" позволил ученым за последние двадцать лет выявить ряд прогностических признаков, которые могут свидетельствовать о назревающих землетрясениях. Так, прямые наблюдения показали, что перед землетрясением свойства горной породы в области будущего очага существенно изменяются. Во многих случаях за несколько месяцев, недель, дней или часов перед сильными толчками происходит заметная деформация земной поверхности. В ряде случаев наблюдаются аномальные наклоны перед сильными толчками. Но этот эффект проявляется на малых расстояниях от эпицентра и в большинстве случаев чрезвычайно осложнен наблюдениями вследствие различных помех. В частности, такие наблюдения проводятся уже много лет на Курильском полигоне (остров Шикотан). Но очень редко удается получить полезную для прогноза информацию.

Измерения, проведенные в США с помощью чувствительных протонных магнитометров, показали: во всех случаях смещению поверхности предшествует резкое изменение магнитного поля. Аналогичные данные были получены при изучении ташкентского землетрясения. Его "созревание" и возникновение напряжений в горных породах сопровождались местными аномалиями магнитного поля, которые исчезали после подземных толчков.

Выявлена также связь между возникновением повторных толчков при землетрясении и изменениями магнитного поля Земли. Этот факт, очень важный для прогнозирования подземных бурь, установили ученые Института геофизики и инженерной сейсмологии АН Армянской ССР. Записи, которые производились ими в эпицентрах землетрясений, свидетельствуют, что перед каждым повторным толчком интенсивность магнитного поля резко возрастает.

На приближение подземной бури указывают также появляющиеся аномалии в электрическом поле Земли, падение электрического сопротивления горных пород.

В 1973 году Комитет по делам изобретений и открытий при Совете Министров СССР зарегистрировал новое открытие, сделанное группой ученых Москвы и Ташкента: советские геохимики и геофизики обнаружили, что в период, предшествующий землетрясению, и в момент катастрофы в подземных водах изменяется концентрация содержащихся в них инертных газов - радона, гелия, аргона и химических элементов урана, фтора, а также изменяется изотопный состав гелия и урана.

У этого важного открытия довольно любопытная предыстория, с которой читателю, как нам думается, небезынтересно будет, хотя бы кратко, познакомиться.

Все началось с того, что еще на рубеже XIX и XX столетий, когда сейсмология как наука, по сути, только зарождалась, известный русский ученый, академик Б. Б. Голицын (1862-1916 гг.) указал на необходимость организации наблюдений над одним из источников пятигорской группы минеральных вод "одновременно с наблюдениями над различными сейсмическими явлениями". Дальше события развивались так.

В июле 1966 года в Институте физиотерапии и курортологии имени Н. А. Семашко производили очередной анализ ташкентской минеральной воды, в том числе определяли содержание инертного газа радона. И на этот раз, как обычно, инженер Мавашев взял пробу воды, с помощью специальной аппаратуры провел анализ... Результаты удивили Мавашева. Он проделал анализ заново, но итог все тот же - резкое падение концентрации радона. Задумавшись, инженер вспомнил, что во время предыдущего замера, проведенного в апреле до землетрясения, радона в воде содержалось в 2,5 раза больше. Невольно мелькнула мысль: "Не связано ли изменение концентрации с землетрясением 26 апреля?" Раздумья привели молодого специалиста на Центральную сейсмическую станцию "Ташкент". Были подняты все записи с анализами ташкентской минеральной воды, начиная с 1956 года. Тогда рядом с институтом имени Семашко была пробурена артезианская скважина, которая ушла в недра на глубину 1862 м и, по мнению геологов, попала как раз в зону одного из разломов, рассекающих недра Ташкента. Исследования показали, что начиная с 1961 года содержание радона в ташкентской минеральной воде стало заметно увеличиваться. К середине 1965 года оно уже почти удвоилось, но концентрация все еще продолжала повышаться. Начиная с октября 1965 года по апрель 1966 года содержание инертного газа стабилизировалось.

28 апреля. Восьмибалльным толчком началось печально знаменитое ташкентское землетрясение. Замеры показали - концентрация радона падает. К концу 1966 года она достигла величины 1956 года. С февраля 1967 года содержание радона снова начало постепенно повышаться. В середине марта наступила стабилизация повышенной концентрации, а в конце марта на Ташкент обрушилось семибалльное землетрясение. После этого толчка содержание инертного газа опять резко уменьшилось. Зависимость явная!

Выявленная ташкентскими и московскими учеными закономерность подтвердилась при изучении дагестанского землетрясения 1968 года - накануне катастрофы концентрация радона в термоминеральной воде возросла в три раза. Аналогичное явление было обнаружено и в других сейсмоактивных районах.

Чем же объясняется повышение содержания радона перед землетрясением и почему именно этому, а не какому-нибудь другому элементу, выделяющемуся из пород перед подземной бурей, уделяют первостепенное внимание сейсмологи и гидрологи?

Дело в том, что в любом грунте есть вода. Пропитывая породы, она на своем пути растворяет различные химические элементы, находящиеся в них. Но в любой породе есть мелкие поры, заполненные газами. Вода в них не проникает, слишком они малы. Значит, если бы газ вышел из пор и вода попала бы в них, изменился бы и ее состав. А теперь представьте себе, что в одном из сейсмоактивных районов назревает подземная буря. Мы уже говорили, что перед землетрясением в земле нарастают внутренние напряжения. Колоссальное давление в очаге землетрясения приводит к растяжению пород, к разрушению многих пор, к образованию трещин. В образовавшиеся пустоты, естественно, устремляется вода. Интенсивно пробиваясь по тонким трещинкам к поверхности земли, она растворяет на своем пути вещества, не доступные ей раньше. Изменяется химический состав воды. В водоносных слоях повышается концентрация выделяющихся из пород радона, терона, урана, углерода, гелия и многих других элементов. Из них радон - лучший индикатор подземных процессов. У него два важнейших преимущества перед другими элементами. Первое: инертный радон не вступает ни в какие химические реакции, то есть не "отвлекается" по пути к поверхности земли. Второе: радон недолговечен, период его полураспада немногим более трех с половиной суток. После этого его концентрация в воде становится прежней. Все же другие элементы накапливаются в воде в течение длительного времени, и поэтому точной картины изменения ее состава нельзя увидеть. Этим и объясняется то большое внимание, которое сейсмологи и гидрологи уделяют эмиссии радона из земных слоев. Радон очень "гибкий инструмент" для наблюдений за меняющимися со временем процессами в глубинах земли. Не менее важно и то, что до водоносных слоев пробурить скважину значительно легче, чем в глубину, до очага землетрясения, К этому следует добавить: радиоактивность радона позволяет применять для измерений несложные по конструкции счетчики. Институт сейсмологии уже наладил непрерывное автоматическое измерение количества радона в минеральной воде. Чем сильнее ожидаемый подземный толчок, тем четче его можно предвидеть по графикам концентрации радона.

И все же у оперативного, краткосрочного "радонового прогноза" землетрясений имеется одно "но". Пока неизвестно, для всех ли мест земного шара годится этот метод прогнозирования, все ли подземные бури он может предсказать. Так, например, на Курильском полигоне, где сильные землетрясения происходят очень часто, радоновый прогноз не проявил себя. "Во многих случаях, - рассказывает доктор технических наук Ф. И. Монахов, - мы не обнаружили даже сколь-нибудь заметного изменения содержания радона в подземных водах, что считается предвестником сейсмической активности".

В последние годы большую популярность в научном мире приобрел метод прогнозирования землетрясений по аномалии изменений скорости объемных сейсмических волн перед сильным толчком. В основе его лежит регистрация резкого разрыва и расширение горных пород вдоль зоны разлома в земных недрах, когда напряжение в них достигает критической точки. В результате разрывов в насыщенных водой породах образуется множество крошечных полостей. Это замедляет скорость прохождения через породы продольных волн (волн давления, Р-волн), которые идут быстрее по трещинам, наполненным водой. Однако на другой тип сейсмических волн - так называемые поперечные волны, или "волны сдвига" (S-волны), - образование новых трещин оказывает мало влияния. Таким образом, резко нарушается обычное соотношение скоростей волн давления и волн сдвига.

Затем, по мере того как подземные воды постепенно заполняют образовавшиеся трещины, это соотношение восстанавливается до нормального. Однако в результате проникновения воды увеличивается давление внутри горных пoрод, и они как бы "смазываются", в результате чего одна сторона разлома скользит вдоль другой. Именно это перемещение и ощущается на поверхности как подземный толчок.

Взаимодействие волны давления с волной сдвига, на котором основана техника прогнозирования землетрясений, впервые было открыто советскими учеными. Обычно отношение скорости Р-волн к скорости S-волн составляет в среднем 1,7. Но вот, работая в Гармском районе Таджикистана, ученые заметили, что за 2-4 недели до подземного толчка отношение скоростей сейсмических волн понижалось на 12-15%. Затем незадолго до первого толчка оно приходило в норму. Об этом открытии советских ученых, как было сообщено на страницах американского еженедельника "Тайм", американские специалисты услышали в 1971 году на международной встрече ученых в Москве. Важность открытого феномена не ускользнула от их внимания, и они решили поискать подобные сдвиги скоростей волн на сейсмографах, установленных на севере штата Нью-Йорк в районе озера Блю-Маунтин. В дополнение к уже существующей сейсмологической станции ученые установили в различных точках еще семь портативных сейсмографов и ежедневно снимали показания приборов. Усилия ученых не пропали даром. Первого августа 1973 года во главе сейсмологической группы Колумбийского университета по телефону было сообщено, что по произведенным расчетам "через пару дней" следует ожидать землетрясения силой 2,5 или более балла.

Два дня спустя земные недра заколыхались - было зарегистрировано землетрясение в 2,5 балла по шкале Рихтера!

Позднее взаимодействие волн давления с волнами сдвига удалось наблюдать перед землетрясением в Японии и под Лос-Анджелесом (США). И многие исследователи заключили, что этот феномен широко распространен и что в сочетании с другими геологическими явлениями он поможет сейсмологам в конце концов точно назвать заранее время, место и силу многих землетрясений во всех районах мира. Однако оказалось, что этот предвестник не надежен. В частности, это констатировала конференция Геологической службы США, состоявшаяся 22-24 сентября 1976 года и посвященная главным образом проблеме прогноза землетрясений.

Некоторые ученые возлагают надежды на гидрогеоди намический прогноз землетрясений. В основе его - наблю дение за изменением режима подземных вод. Эти измене ния связаны с научно обоснованным предположением об активной деформации земной коры накануне толчка. Уровень подземных вод, насыщающих породы, чутко реагирует на эту деформацию.

Проведенными на Курильском полигоне советскими учеными исследованиями было выявлено, что за 3-7 дней до землетрясения определенного энергетического класса начинается падение уровня подземных вод в скважинах, достигающее 5-10 сантиметров. После непродолжительной стабилизации он опять поднимается. Толчкам предшествует, как правило, начало подъема подземных вод (рис. 12).

Рис. 12. Типовой график изменения уровня воды в скважинах перед сильным землетрясением (по данным Ф. И. Монахова). Колебания уровня воды перед землетрясением 21 июня 1978 года на кунаширской скважине 1 и в итурипских скважинах 2 и 3
Рис. 12. Типовой график изменения уровня воды в скважинах перед сильным землетрясением (по данным Ф. И. Монахова). Колебания уровня воды перед землетрясением 21 июня 1978 года на кунаширской скважине 1 и в итурипских скважинах 2 и 3

Какие же процессы в очаге готовящегося землетрясения приводят к изменению гидрологического режима?

"Лабораторные опыты показали, - рассказывал руко водитель группы ученых Сахалинского комплексного научно-исследовательского института ДВНЦ АН СССР доктор технических наук Ф. И. Монахов, - что при подготовке разлома твердых земных пород происходит разуплотнение вещества. Вследствие этого объем образца увеличивается за счет образования микротрещин. Причем процесс этот обратим; непосредственно перед разломом микротрещины снова закрываются, и вещество уплотняется. Такое вление неупругого расширения вещества под влиянием растущих напряжений в науке называется дилатансией. Сейчас многие ученые считают, что в очаге назревающего землетрясения происходит именно такой процесс".

Изменение режима подземных вод с позиции дилатансионнои теории объясняется так. Образовавшиеся микротрешины и поры заполняются водой из окружающей среды, что приводит к понижению уровня. Непосредственно перед толчком породы уплотняются, и вода выжимается. Уровень ее начинает повышаться.

Однако такое предельно простое и ясное объяснение процесса изменения режима подземных вод перед толчком, по мнению некоторых ученых, справедливо лишь для скважин, расположенных в непосредственной близости к очагу. Результаты наблюдений на Курильском полигоне опровергают это мнение. "Мы наблюдали, - рассказывал Ф. И. Монахов, - изменение уровня воды перед землетрясениями, которые были удалены от скважин на 600-700 километров, а очаги их располагались на глубине до 200 километров. По нашему мнению, дилатансия - расширение объема пород - вызывает упругие напряжения за пределами центра сейсмической активности. Впрочем, такой вывод, к которому мы пришли экспериментальным путем, еще требует теоретического обоснования. Во всяком случае, мы установили, что величина, на которую падает в скважине столб воды, зависит от двух причин - интенсивности явления и удаленности его центра от пункта наблюдений".

Какова же реально прогностическая надежность гид-рогеодинамического метода?

Недавние наблюдения показали, что гидрогеодинамиче-ский метод позволяет предсказать все три самых важных для прогноза параметра - время, силу и место толчка. Обратимся к фактам.

19 марта 1978 года наблюдатели на Курильском полигоне Ю. Шлюев и В. Ашихин объявили прогноз на ближайшие 2-3 дня. И действительно, 22-23 марта произошло 4 толчка с магнитудой 6,7-7,6. Эпицентры находились в океане в 150 км юго-восточнее острова Итуруп. 24 марта наблюдатели сообщили о новом землетрясении на ближайшие сутки. Оно и произошло 25 марта и было самым сильным (М=8). В тот же день Ю. Шлюев и В. Ашихин предсказали следующее - в течение суток. Прогноз подтвердился серией толчков (М= 5-6) в ночь с 25 на 26 марта. После этого наблюдатели информировали о сейсмическом затишье, сбылось и это предсказание.

19 марта 1978 года наблюдатели на Курильском полигоне Ю. Шлюев и В. Ашихин объявили прогноз на ближайшие 2-3 дня. И действительно, 22-23 марта произошло 4 толчка с магнитудой 6,7-7,6. Эпицентры находились в океане в 150 км юго-восточнее острова Итуруп. 24 марта наблюдатели сообщили о новом землетрясении на ближайшие сутки. Оно и произошло 25 марта и было самым сильным (М=8). В тот же день Ю. Шлюев и В. Ашихин предсказали следующее - в течение суток. Прогноз подтвердился серией толчков (М= 5-6) в ночь с 25 на 26 марта. После этого наблюдатели информировали о сейсмическом затишье, сбылось и это предсказание.

Аналогичного успеха добились ученые Андижанского научно-исследовательского отдела Института сейсмологии Академии наук Узбекской ССР. На основе данных наблюдательных точек 3 октября 1978 года было высказано предположение: в ближайшие дни в 300 километрах юго-восточнее Андижана произойдет сильное землетрясение, 8 октября этот прогноз с большой точностью подтвердился. Толчки в Андижане ощущались силой пять-шесть баллов, как и ожидали сейсмологи. Были предсказаны также район и приблизительная сила землетрясения, происшедшего 1 ноября 1978 года в Алайской долине.

Точность, с которой советские специалисты предсказали крупное землетрясение в Алайской долине, по свидетельству печати США, произвела большое впечатление на американских ученых: впервые в мировой практике землетрясение было предсказано с точностью до нескольких часов по времени, нескольких баллов шкалы Рихтера по силе и нескольких сот километров по расположению эпицентра...

"Больше всего поражает огромное количество измерений, использованных советскими учеными для предсказания этого землетрясения, - сказал руководитель отдела изучения землетрясений геологической службы США доктор Роб Уэссон. - Эти измерения производились больше года. В середине октября были отмечены резкие изменения в сейсмической активности, а за день до землетрясения - резкое изменение уровня воды".

"Именно основываясь на изменении уровня грунтовых вод, советские ученые сделали предсказание за день до землетрясения, - отметил на страницах "Вашингтон пост" профессор Колумбийского университета Давид Симпсон. - Среди геологов бытует мнение, что перед землетрясением происходит общий подъем земной коры и что грунтовые воды по образовавшимся трещинам уходят вглубь. Было зарегистрировано также увеличение зарядов статического электричества".

Благодаря своевременному предсказанию, подчеркнул доктор Симпсон, землетрясение силой 6,7 балла по шкале Рихтера обошлось без жертв.

В сущности, система "скважина - водоносный горизонт" представляет собой естественный прибор - деформограф. Поэтому колебания уровня воды - это не что иное, как запись деформации земной коры. Таким образом, с гидродинамическим методом, по мнению Ф. И. Монахова, "способен конкурировать только прямой деформографический, то есть запись кварцевых или других приборов, устанавливаемых на поверхности Земли. Но наша система, - писал ученый, - обладает преимуществом. Во-первых, у кварцевых деформографов отношение сигнала к шуму не превышает 1, а при записях уровня воды в скважинах это отношение равно 5-10. Далее, кварцевый деформограф измеряет линейную деформацию в толчке, а уровень подземных вод реагирует на объемную деформацию всей зоны".

Для того чтобы получать ежедневную информацию о возможных в ближайшее время опасных подземных толчках или о затишье сейсмической активности, необходимо иметь целую систему скважин, расположенных на достаточно больших расстояниях друг от друга и окружающих очаг будущего землетрясения. Именно при сравнении уровней воды в скважинах можно определить положение очага и оценить его силу.

Итак, будущее за гидрогеодинамическим методом предсказания подземных бурь?

Пока, вероятно, ни один ученый не решится сказать категорическое - да! Надо продолжить наблюдения, экспериментировать, творчески обосновать явление дилатансии. Гидрогеодинамический метод прогнозирования землетрясений должен пройти проверку временем. Тем не менее сегодня бесспорно одно - именно гидрогеодинами-ческий способ позволил советским ученым предсказать ряд землетрясений 1978 года, происшедших на Курильских островах и в Андижанской зоне.

Предвестниками подземных бурь иногда бывают различные световые эффекты, электрическое свечение, наблюдаемые перед землетрясением. Одно из первых документальных свидетельств об этом замечательном феномене относится ко времени Древнего Рима - к 373 году до н. э. В Египте, в Индии, в Южной Америке, в Европе - где только не пугали людское воображение огневые чудеса, сопутствующие содроганиям матушки-земли! Для вящей убедительности ознакомим читателя со свидетельствами, касающимися только текущего века. Итак...

В 1911 году при землетрясении в Германии в безоблачном небе возникли огненные шары.

В 1923 году (землетрясение в Токио) из-под земли струился огненный туман.

Очевидцы знаменитого крымского землетрясения (1927) рассказывали об огненных столбах, поднявшихся над морем. Напротив мыса Лукулл столбы огня взвились на высоту около 500 метров.

Землетрясение на полуострове Идзу (Япония) в 1930 году: световые явления напоминали замедленные вспышки исполинских молний, в районе максимальных сейсмических разрушений возникли огненные шары и длинные полосы, напоминающие северное сияние.

1940 год - странное свечение неба во время девятибалльного землетрясения в Карпатах.

1948 год. Ашхабад. Вот свидетельство одного из очевидцев, метеоролога Помутского: "Перед сном я вышел из дому подышать свежим воздухом. Вдруг появились ослепительно яркие электрические разряды. Они образовали дугу, которая надвигалась от гор в мою сторону и ушла в землю около водонапорной башни в 30-40 метрах от меня. Затем последовал порыв ветра. Он прекратился мгновенно, и сразу же задрожала земля".

Другой очевидец ашхабадской трагедии, ученый-геолог вспоминает: "В гостиницу я вернулся поздно и уже собирался лечь спать, как вдруг заметил в окне странные вспышки, беззвучно озарявшие горизонт... Мне показалось, что это гроза, и потому последующий грохот и сотрясение я воспринял сначала как запоздавшие удары грома..."

1960 год. Землетрясение в Чили. Горные вершины вблизи эпицентра, казалось, были охвачены языками пламени.

1966 год. Ташкент. Незадолго до землетрясения 25 апреля, когда солнце еще пряталось где-то за горизонтом, над крышами ташкентских домов взвился гигантский факел. "В ту же ночь наблюдалось и другое не менее примечательное явление. За несколько часов до землетрясения в некоторых домах, расположенных в эпицентре, люминофор ламп дневного света начал самопроизвольно светиться" - так пишет в своей книге ташкентский сейсмолог, доктор физико-математических наук В. А. Уломов.

В заключение процитируем абзац из книги американского геофизика Э. Робертса "Когда сотрясается земля": "При землетрясениях часто отмечают непонятные свечения, похожие то на яркие вспышки, то на столбы света, а иногда на сполохи или светящиеся шары, мягкую подсветку и даже на слабые красноватые отблески на облаках или земле..."

Свечение, несомненно, одна из "примет" землетрясения. Ведь тысячи и тысячи людей на протяжении многих веков отмечали, в общем-то, одни и те же подробности загадочного природного феномена. Но, к сожалению, таинственные световые эффекты, напоминающие то зарницы, то ослепительно яркие разряды, то шаровую молнию, - приметы не заблаговременные: они обычно возникают всего за десятки секунд, в лучшем случае - за несколько минут перед самым толчком.

Замечено, что землетрясению предшествуют не только призрачные молнии, шары и огни, но резко возрастает напряженность электрического поля в атмосфере. Впервые это явление подметил ташкентский профессор Е. А. Чернявский. В августе 1924 года он вместе с экспедицией прибыл в Джалал-Абад (Киргизия) для изучения атмосферного электричества в полевых условиях. Исследования проводились с помощью аппаратуры, сконструированной самим Чернявским. Вот его рассказ:

- В день, когда нас поразило необычное поведение нашего прибора, небо было ясное. Однако аппаратура со всей очевидностью показывала - в атмосфере разразилась "электрическая буря" с чрезвычайно высоким потенциалом. Каким именно - измерить не удалось, так как стрелка прибора сразу же ушла за пределы шкалы. А два часа спустя разверзлась земля. Мы видели трещины шириной в полтора-два метра и длиной до сорока метров. Тогда-то я и подумал: может, землетрясение и было причиной аномального состояния атмосферного электрического поля?

По свидетельству сотрудника Среднеазиатского гидрометеорологического института К. Э. Церфаса, возмущение электрического поля земли было зафиксировано и за пять часов до первого подземного удара 26 апреля 1966 года в Ташкенте. Наблюдалось оно здесь и перед некоторыми последующими толчками, при полном отсутствии какой-либо привычной метеорологической причины, будь то гроза или пылевая буря.

Итак, ученые, по-видимому, напали на след еще одного из предвестников землетрясения. Но это еле заметный след. Дело в том, что в распоряжении ученых имеются пока что лишь случайные и очень неполные факты. В такого рода наблюдениях не всегда можно выявить непосредственно само явление в его "чистом" виде, отсеять сопутствующие, а то и просто преходящие факторы. Да и разумно ли требовать тщательности анализа впечатлений от тех, кто был застигнут стихийным бедствием? Есть трудности и иного характера. Речь идет об облачности, тумане, ветре. Они также влияют на электрическое поле атмосферы. Как выделить из общей аномалии электрического потенциала атмосферы ту долю, которая вызвана предстоящим землетрясением? Нелегко ответить на этот вопрос. Сегодня мы с уверенностью можем говорить об изменении электрического потенциала в воздухе за счет подземной бури лишь при безоблачной и спокойной погоде.

Недавно американские ученые предложили теорию, объясняющую, почему, за счет каких процессов происходит возмущение электрического поля земли, возникают "призрачные огни землетрясений". Согласно ей превращение сейсмической энергии в атмосферное электричество является результатом пьезоэлектрического эффекта, возникающего при сдавливании кристаллов кварца земной коры. Ученые подсчитали, что соответствующие сейсмические напряжения в земной коре могут создать электрическое поле напряженностью до 50-500 млн. Вт.

предыдущая главасодержаниеследующая глава







© GEOMAN.RU, 2001-2021
При использовании материалов проекта обязательна установка активной ссылки:
http://geoman.ru/ 'Физическая география'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь