НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ  







Народы мира    Растения    Лесоводство    Животные    Птицы    Рыбы    Беспозвоночные   

предыдущая главасодержаниеследующая глава

Ищем источник ионизации

"Одинокой области D нужен приличный источник ионизации для воздействия в дневное время. Обращаться по адресу: Земля, ионосфера, высота 65 - 85 км". Так, вероятно, должна выглядеть проблема, если перевести ее на язык доски объявлений.

Ну а если говорить серьезно, то поиски источника ионизации в D-области доставили исследователям немало хлопот.

Мы уже знаем, что солнечное ультрафиолетовое излучение с λ<1000 Å не проникает в атмосферу ниже 120 - 140 км. Оно является главной причиной существования основной части ионосферы. Его ближайший помощник - рентген с длиной волны 10 - 100 Å - ионизует нейтральные частицы на высотах 90 - 120 км, обеспечивая тем самым существование области Е. Но и он не может пробиться сквозь толщу нейтральных частиц на меньшие высоты.

Остается еще более коротковолное излучение с λ<10 Å. Кванты этого излучения благодаря своей высокой энергии способны пробиться несколько глубже в толщу атмосферы и вызвать ионизацию на 80 - 90 км. Но и в этом случае интенсивность очень резко падает с уменьшением высоты из-за сильного поглощения. Скорость ионизации, которую может обеспечить рентген, составляет на высоте 80 км 0,004%, или 4×10-5 скорости ионизации на высоте 100 км, а на 70 км эта величина уменьшается до 10-7. Реально оказывается, что эта скорость ионизации способна обеспечить лишь образование самой верхней части области D, лежащей выше 85 км. Очевидно, если бы за ионизацию D-области отвечал только рентген, то эта глава просто не понадобилась бы, так как не было бы ни проблем, ни загадок, ни самой D-области. Но она есть, со всеми своими проблемами. Значит, есть и другие источники, ее питающие, помимо рентгена. Один из таких источников - галактические космические лучи. Последние суть ядра тяжелых элементов прилетающие из просторов галактики и вторгающиеся в атмосферу. Энергия этих частиц столь велика, что они свободно достигают поверхности Земли или, во всяком случае, низколежащих плотных слоев. Ни о каком поглощении космических лучей на ионосферных высотах, которые интересуют нас, нет и речи.

Коротковолное излучение
Коротковолное излучение

Казалось бы, Космические лучи - кандидат номер один на роль создателя области D. Но и у них есть свои трудности. Поток космических лучей мал. А посему требуется много нейтральных частиц, чтобы произошло достаточное число актов ионизации (напомним, что q пропорционально потоку частиц n и концентрации нейтралов [М]). Значит, вклад космических лучей в ионизацию в атмосфере будет возрастать вниз и падать вверх. Оценки показывают, что предельная высота, на которой этот вклад еще существен,- 65 км. Ниже вся ионизация в атмосфере обязана своим происхождением именно космическим лучам. Выше... Выше они бессильны, так как мала плотность нейтральных частиц.

Итак, источники ионизации в D-области выше 85 км и ниже 65 км известны. А кто же отвечает за поддержание ионизации в основной части D-области между 65 и 85 км? Вот на этом-то "участке фронта" и разгорелись основные бои.

Для решения проблемы нам нужен источник (излучение или потоки частиц), который без существенного поглощения проникает на высоты 70 - 80 км. Солнечное излучение короче 1000 Å мы уже рассмотрели. Оно не может проникнуть так глубоко в атмосферу. Излучение с λ>1000 Å? Но оно маломощно для наших целей. Один квант этого излучения несет слишком мало энергии (меньше 12 эВ), чтобы оторвать электрон от молекулы азота или кислорода, из которых на 99% состоит атмосфера на этих высотах. (Напомним, что потенциал ионизации 02 и N2 составляет соответственно 12 и 15 эВ). Значит, единственная надежда - поиск не основной, малой составляющей, которая бы не была столь привередлива, как азот и кислород, и поддалась бы воздействию более мягкого излучения. Такая компонента нашлась. Это окись азота NO, потенциал ионизации которой равен 9,6 эВ. Разница с 02 вроде бы и не очень большая, но какая принципиальная! Чтобы оторвать электрон от нейтральной молекулы NO, хватает энергии кванта излучения в линии Lα (λ =1216 Å). Один квант этого излучения несет энергию около 10 эВ (т. е. чуть-чуть больше, чем необходимо для ионизации молекулы NO, но совершенно недостаточно для ионизации молекулы 02 или тем паче N2), причем общее количество этих квантов, или интенсивность линии, очень велико и составляет около 3×1011 на квадратный сантиметр в секунду. Это большое число. Оно больше, чем полное количество квантов в области длин волн короче 1000 Å, ответственное, как мы знаем, за ионизацию всей ионосферы выше 90 - 100 км. Никаких неприятностей с поглощением у Lα тоже нет. Это излучение проникает почти без поглощения в столь волнующую нас область 70-80 км.

Получается, что подходящий ионизующий агент найден. Найдена и компонента, которая готова ионизоваться под действием этого агента. Вроде бы есть хороший источник ионизации: Lα плюс окись азота. В чем же, собственно, проблема? В количестве NO.

Проблема окиси азота тесно связана со многими обсуждаемыми здесь вопросами. Мы поговорим о борьбе мнений по поводу количества NO в следующей главе, однако частично коснуться этого мы должны уже сейчас.

Для простоты рассмотрим одну какую-нибудь высоту, скажем, 80 км. (Для других высот - 70, 75 или 85 км - проблемы принципиально останутся теми же, только сдвинутся все цифры). На этой высоте для поддержания дневной ионосферы необходимо иметь примерно 1 - 10 актов ионизации в 1 см3 в 1 с. Как получены эти цифры, станет ясно из дальнейшего. Такая скорость ионизации q при заданном потоке излучения в линии Lα (опять же для простоты станем считать его хорошо известным и неизменным во времени) на рассматриваемой высоте требует концентрации окиси азота порядка 107- 108 см-3. Много это или мало?

В этом и есть суть проблемы. Как увидим в следующей главе, именно вокруг этих величин и крутятся экспериментальные оценки количества NO в D-области, колеблясь от 106 до 109 см-3. Ясно, что наша проблема источника ионизации очень зависит от этих цифр. Если [NO]≈106 см-3 и меньше, как давали первые теории и эксперименты, ионизация окиси азота является слабым процессом и проблема источника ионизации на высотах 65 - 85 км встает во весь рост.

Именно эта ситуация подтолкнула ученых в середине шестидесятых годов к поискам новых путей поддержания ионизации в средней части D-области. Поскольку казалось, что все возможности электромагнитного излучения Солнца уже исчерпаны, обратились к потокам корпускул. Могут ли потоки энергичных заряженных частиц проникать в область D и вызывать там ионизацию? Выяснилось, что могут. И наиболее вероятный кандидат для этого - электроны с энергиями в десятки килоэлектронвольт. Такие электроны должны свободно проходить через более высокие слои атмосферы и тратить свою энергию (в основном на ионизацию) как раз на высотах 60 - 80 км. Дело лишь в том, существуют ли достаточные потоки таких электронов в атмосфере.

Некоторое время вопрос этот оставался открытым к соответственно оставалась нерешенной проблема ионизации области D. Затем провели измерения на ракетах (а это, конечно, далеко не просто) и получили, что потоки электронов с энергиями в десятки килоэлектронвольт существуют, но... их интенсивность в спокойных условиях на средних широтах недостаточна для поддержания ионосферы. На высоте 80 км, например, они способны обеспечить скорость ионизации около 0,1 акта см-3×с-1, а нужно, как мы знаем, 1 - 10 актов см-3×с-1.

Значит, в чистом виде идея не прошла. Но она, как и многие идеи такого рода, не была бесплодной. Потоки электронов указанных энергий признаны основным источником ночной ионизации в области D, когда отсутствует солнечное излучение. Эти потоки важны и для объяснения ионизации на высотах 60 - 80 км в возмущенных условиях, т. е. в полярной ионосфере и во время геомагнитных бурь в средних широтах. В этих случаях потоки электронов, тесно связанные с магнитным полем Земли, могут возрастать в десятки и сотни раз, что, видимо, и объясняет возрастание ионизации в D-области во время таких возмущений.

Американские ученые Хантен и Мак Элрой предложили еще один механизм ионизации в области 65 - 85 км, о котором ранее не думали. Мы знаем, что излучение с λ>1000 Å не в состоянии ионизовать обычную молекулу азота или кислорода - не хватает энергии кванта. Ну а если молекула необычная? Если она находится в возбужденном состоянии, т. е. сама несет некий запас энергии? Оказывается, в этом случае энергия кванта, способного ионизовать такую молекулу, может быть меньше, так как дефицит покрывается за счет внутренней энергии возбужденной молекулы.

Именно на этом простом принципе построена идея Хантена и МакЭлроя. В солнечном спектре есть интервал длин волн 1027 - 1118 Å, излучение которых относительно легко проникает на высоты области D. Само по себе это излучение не может ионизовать ни О2 ни N2 - не хватает энергии. Но от энергии кванта этого излучения (в среднем 11,5 эВ) до порога ионизации молекулы кислорода (около 12 эВ) относительно недалеко. Разница составляет менее 1 эВ. Чтобы ее компенсировать, нужна молекула О2, сама запасшая примерно такую энергию. Для этой роли вполне подходит молекулярный кислород, возбужденный в состояние 1Δg. He вдаваясь сейчас в детали, отметим, что энергия возбуждения для состояния 1Δg, т. е. энергия, которую запасает молекула кислорода, находясь в этом состоянии, чуть меньше 1 эВ. Вполне достаточно, чтобы покрыть дефицит и "поддаться" ионизации излучением 1027-1118 Å.

Роль описанного механизма в образовании области D зависит, естественно, от количества окиси азота. Мало NO - слаб механизм N0 плюс Lα, значит, ионизация О2 (1Δg) выходит на первое место. Много окиси азота - ионизация О2 (1Δg) играет более скромную роль.

По современным представлениям, окиси азота все-таки "много"- как раз те 107 - 108 молекул на кубический сантиметр, которые необходимы, чтобы объяснить ионизацию D-области механизмом N0 плюс Lα.

Однако, какова бы ни была роль ионизации молекул О2(1Δg) в общем ионизационном бюджете на высотах 65 - 85 км, этот механизм является в дневное время основным поставщиком ионов О2+, тогда как ионизация в линии Lα способна порождать лишь ионы N0+. Как мы увидим ниже, вопрос о том, какие именно ионы рождаются в первичном акте ионизации, может быть очень важен для понимания всего дальнейшего цикла ионных превращений.

Все, о чем мы говорили в этом параграфе, справедливо для, так сказать, нормальных условий, т. е. для области D в дневное время не в полярных районах и без особых возмущений. Ночная среднеширотная область D изучена пока плохо. И причина лежит прежде всего в трудностях измерений. Ведь ночью концентрации ионов во всем интервале высот 50 - 90 км много меньше (в 10 - 100 раз), чем днем, а концентрации электронов ниже некоторого уровня практически равны нулю. В этих условиях все трудности экспериментального характера, упомянутые в начале главы, возрастают во сто крат. Соответственно мы очень плохо представляем себе и фотохимию ночной области D. Ясно лишь, что основным кандидатом на роль главного источника ионизации являются потоки электронов, о которых .мы уже говорили выше. Так ли это, достаточно ли энергии этих потоков для поддержания ночной области D или, может быть, нужны какие-либо дополнительные источники вроде предложенной индийскими учеными ионизации коротковолновым излучением звезд? Это вопросы, над которыми специалисты по аэрономии работают сегодня.

Перейдем теперь к возбужденной D-области. Во время солнечных вспышек электронная концентрация на высотах 70 - 90 км возрастает в десятки, а иногда и в сотни раз. Не вызывает особых сомнений, что указанный эффект связан с сильным возрастанием интенсивности рентгеновского излучения Солнца во время вспышки. Эта интенсивность (особенно для самой жесткой, т. е. самой коротковолновой, части спектра) при сильной вспышке может увеличиться в тысячи раз и более. При этом, естественно, во много раз увеличивается проникновение рентгеновских лучей в область D, и они становятся главным источником ионизации на высотах 70 - 80 км, где в обычных условиях они "тушуются" на фоне более сильных механизмов NO плюс Lα и О2(1Δg) плюс излучение 1027-1118 Å.

Последнее обстоятельство крайне важно для изучения физики области D. Ведь рентгеновское излучение умеют достаточно надежно измерять с помощью искусственных спутников. И механизм ионизации таким излучением не требует присутствия экзотических компонент (NО или 02 (Å)) - он легко ионизует основные атмосферные невозбужденные компоненты азот и кислород. Что означает: в случае вспышки мы можем иметь достаточно точные и надежные величины скорости ионизации q для тех высот, где в обычных условиях в силу трудностей, описанных выше, таких величин пока нет. Как удается использовать этот факт, мы увидим ниже.

Рентгеновское излучение
Рентгеновское излучение

Другой вид возмущения, характерный только для высокоширотной области D, - так называемое поглощение в полярной шапке. Это возмущение производят протоны высоких энергий, приходящие к Земле от Солнца. Магнитное поле Земли направляет такие протоны вдоль силовых линий в околополюсные зоны, где они и вторгаются в верхнюю атмосферу. Обладая высокой энергией (десятки миллионов электронвольт), протоны без особых эффектов проходят верхнюю часть ионосферы и резко увеличивают ионизацию на высотах D-области. И опять, как и в случае солнечных вспышек, важным является то обстоятельство, что ионизация протонами не зависит ни от N0, ни от О2 (рентгеновское излучение ), ни от других малых компонент - протоны ионизуют все частицы (в том числе и основные - N2 и О2), так сказать, невзирая на лица.

Вот как обстоит дело с источниками ионизации. Но знать источники (и даже скорости) ионизации еще не достаточно, чтобы понять поведение данной области ионосферы. Ионы и электроны, рожденные в первичном акте ионизации, оказываются затем вовлеченными в сложную сеть фотохимических процессов: реакции образования ионов-связок, рекомбинационных процессов и реакции с участием отрицательных ионов.

предыдущая главасодержаниеследующая глава







© GEOMAN.RU, 2001-2021
При использовании материалов проекта обязательна установка активной ссылки:
http://geoman.ru/ 'Физическая география'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь