НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ  



Океанологи из США выяснили, почему морские черепахи едят пластиковый мусор

В Истре становятся «ихтиандрами» даже те, кто не умеет плавать

Джеймс Кэмерон побывал на дне Марианской впадины

Уровень моря будет расти ещё 500 лет

Составлена трехмерная карта Марианской впадины

Стартовала самая масштабная миссия по очистке океана от пластикового мусора

Из-за шума корабельных двигателей речь дельфинов становится проще




Найден керн антарктического льда, предположительно сохранивший миллионы лет истории

Подо льдами Антарктиды обнаружили почти сотню неизвестных вулканов

Учёные обнаружили «солнечные фильтры» в растениях Антарктиды

Сто тысяч лет назад ледовый покров Арктики не таял при гораздо более теплом климате

Официально открыта бразильская антарктическая станция

Как крымчанин стал покорителем Арктики

Какие секреты скрывает самое большое озеро в Антарктиде?




Открыто новое царство эукариотов

Обнаружены гигантские вирусы с расширенным репертуаром генов для синтеза белка

Ученые перенесли воспоминания от одной улитки другой

Многоклеточные организмы появились гораздо раньше, чем предполагалось

Одноклеточные ровесники динозавров рассказали о существовавшем в центре Австралии море

Учёным впервые удалось успешно заморозить (и разморозить) зародыш рыбы

Зрительные образы ученые вживили в мозг мышей


Народы мира    Растения    Лесоводство    Животные    Птицы    Рыбы    Беспозвоночные   

предыдущая главасодержаниеследующая глава

Почему это так трудно

В чем тут дело? Почему изучать физику заряженных частиц на расстоянии 60 км труднее, чем на расстоянии 600 км? Причины этому две. Одна связана с тем, что сама жизнь заряженных частиц в условиях плотной нейтральной атмосферы в области D неизмеримо сложнее, чем на разреженных просторах внешней ионосферы (выше максимума ионизации на 250 - 300 км). Как мы знаем, плотность нейтрального газа в атмосфере резко падает с высотой. Количество нейтральных частиц в единице объема на расстоянии 600 км во много миллионов раз меньше, чем на расстоянии 60 км. Соответственно меньше и частота столкновений заряженных частиц с нейтральными, а значит, меньше хлопот со всякими процессами, которые такие столкновения порождают.

В то же время ионы и электроны в области D вкраплены в весьма плотную (по ионосферным понятиям, разумеется) среду нейтральных частиц и непрерывно с очень большой частотой сталкиваются с последними, порождая обилие химических превращений. Отсюда и разнообразие типов положительных ионов, и появление отрицательных ионов, и весьма сложная связь с такими малыми составляющими, как NO, О, Н2О, концентрации которых сами по себе известны плохо, и т. д. Все это вместе взятое и делает сложным поведение ионосферы на высотах 50 - 90 км и трудным исследование ее физических процессов, которые определяют первую из упомянутых выше причин плохой изученности D-области. О проблемах физики и структуры этой области как раз и пойдет дальше речь.

Область D
Область D

Вторая причина, тормозящая прогресс в исследовании D-области, касается экспериментальных трудностей и связана, как и первая, с расположением этой области в достаточно плотных слоях атмосферы.

Сколь-нибудь подробный разбор различных методик ионосферных измерений выходит за рамки этой книги, поэтому ограничимся здесь лишь самым общим описанием проблемы.

Прямые измерения ионосферных параметров (концентраций ионов, электронов, электронной и ионной температур) выполняются различными методами. Скажем, на ракете устанавливается специальный прибор - зонд, который измеряет количество заряженных частиц в окружающем ракету атмосферном газе, анализируя изменение электронной проводимости этого газа между двумя электродами, на которые подано высокое напряжение. Этот метод дал много сведений о распределении ионов и электронов в ионосфере выше 100 км. Пытались применять его и для измерений на меньших высотах. Но вот беда, в условиях высокой плотности нейтрального газа он становится ненадежен. Абсолютные значения измеряемых параметров начинают зависеть от многих факторов: плотности газа, образования пленки на электродах, так называемой подвижности ионов в газе и т. д. И точно учесть эти факторы очень и очень трудно. Когда сравнили зондовые измерения в области D с другими, более надежными результатами, оказалось, что величины, например, общей концентрации положительных ионов [Х+] в зондовых измерениях сильно завышены (в 3 - 5, а то в 10 раз). К чему это привело с точки зрения аэрономических проблем, мы поговорим ниже. Сейчас отметим, что в последнее время практически отказались от абсолютных измерений зондовой методикой в области D и используют ее лишь для относительных измерений, т. е. для того, чтобы судить, как выглядит форма высотного профиля концентрации положительных ионов или электронов.

Очень много полезных сведений о строении ионосферы дает так называемый метод некогерентного рассеяния. Метод этот очень дорогостоящий и требует создания огромных радиолокаторов, посылающих в атмосферу мощные импульсы (несколько мегаватт) радиоволн. Тем не менее в мире сейчас существует и успешно работает около десятка таких установок. Но вновь та же беда. В плотных слоях атмосферы из-за частых столкновений электронов и ионов с нейтралами этот метод неприменим. Нижняя граница, с которой еще можно получить сведения об ионосферных параметрах, лежит сейчас на 100 - 150 км. В решении проблем D-области, таким образом, некогерентное рассеяние помочь не может.

По всему земному шару разбросана сеть ионосферных станций. Эти станции регулярно патрулируют состояние ионосферы - следят за отражением радиоволн различных частот от ионосферных слоев. Каждые 15 минут на каждой станции получают и фотографируют картинку-ионограмму, где видно, на каких высотах отражаются радиоволны каких частот. Богатейший материал накоплен таким образом о поведении главного ионосферного максимума в области F2 (250 - 300 км). Часто появляется на ионограммах слой F1 (180 - 200 км), днем хорошо видна ионизация в области Е (100 - 120 км), в виде яркого следа проявляется узкий спорадический слой Es (≈105 - 110 км). А вот область D вновь оказывается не охваченной этим методом исследования. На ионограммах ей нет места: радиоволны, испущенные ионосферной станцией, не отражаются от области D. Правда, нельзя сказать, что оператор на ионосферной станции совсем не видит этой области. Время от времени она проявляется, но в негативном плане. Некоторые частоты исчезают с ионограммы. Они застряли по дороге от станции к отражающим слоям и обратно - частично или полностью поглотились на высотах до 100 км. Эффект D-области налицо. Но говорит ли это нам что-нибудь о структуре самой D-области? К сожалению, очень мало. При вертикальном ионосферном зондировании (так называется описанный выше метод), как и в других случаях, когда измеряется интегральный (суммарный) эффект прохождения радиоволн через D-область, очень трудно перейти от этого интегрального эффекта к реальному распределению концентраций электронов (а именно они определяют поглощение радиоволн) по высоте и к абсолютным значениям этих концентраций. Ведь нам, во-первых, ничего неизвестно, как распределено само поглощение с высотой, а во-вторых, это поглощение зависит не только от концентрации электронов, но и от того, сколь часто они сталкиваются с нейтральными частицами, т. е. от частоты соударений. А этот параметр порождает в D-области уже свои проблемы, обсуждение которых увело бы нас далеко в сторону. Отметим лишь грустный факт, что и вертикальное зондирование не дает желаемых сведений о строении ионосферы на высотах 50 - 90 км.

Эффект D-области
Эффект D-области

В предыдущих главах мы уже видели, как важно знать ионный состав ионосферы на разных уровнях и как много дали масс-спектрометрические измерения этого состава в Е- и F-области. Ну а что же в D-области? Та же картина. Различные типы масс-спектрометров, успешно применяемые выше 100 км, ниже работать не могут. Они "захлебываются" в плотной нейтральной среде и либо совсем выходят из строя, либо отказываются измерять нужные параметры.

Чтобы спасти положение, придумали, как "обмануть" масс-спектрометры и заставить их работать на малых высотах. Перед анализатором прибора стали помещать камеру с вакуумным насосом. Насос непрерывно откачивает воздух, поступающий из атмосферы, окружающей ракету, и создает в камере пониженное давление, которое масс-спектрометр способен "пережить". Прибор работает и дает сведения об относительном содержании различных ионов в окружающем газе, но, естественно, не об их абсолютном количестве.

Ясно, что описанная процедура делает масс-спектрометрические эксперименты на малых высотах значительно более сложными и громоздкими, чем на высотах Е- и F-области. Именно поэтому активное исследование ионного состава D-области задержалось по сравнению с более высокими областями почти на 10 лет.

Масс-спектрометрический эксперимент
Масс-спектрометрический эксперимент

Но это еще не все. Специфика самого ионного состава области D вносит дополнительные трудности в процесс его измерений. Сложные положительные ионы-связки, играющие, как выяснилось, большую роль в физике D-области, очень неустойчивы. Образно говоря, они могут развалиться от малейшего прикосновения. А ведь прикосновение ракеты, налетающей на неподвижный газ со скоростью 1 км в секунду, трудно назвать "малейшим". Возникла опасность, что те ионы, которые масс-спектрометр измеряет в нижних слоях,- не что иное, как жалкие осколки значительно более сложных (и соответственно более громоздких и неустойчивых) ионов-связок, реально существующих в атмосфере и распадающихся при встрече с прибором под действием различных факторов (ударная волна движущейся раке ты, электрическое поле прибора и т. д.). Значит, одной лишь откачной системы мало - нужны еще специальные ухищрения, чтобы избавиться от разрушения сложных ионов.

А отрицательные ионы. Ведь проблемы их измерения не стояло при исследованиях состава ионосферы выше 100 км. Значит, здесь для масс-спектрометристов вообще "terra incognita". Да плюс те же самые трудности с возможным распадом сложных отрицательных ионов-связок на более простые в самом процессе измерений.

Нужно ли, учитывая все это, удивляться, что в области D мы далеки от того положения с исследованием ионного состава, которое имеется в других ионосферных областях.

Итак, сложность получения экспериментальной информации о строении и составе ионосферы ниже 100 км очевидна. Несмотря на это, естественно, делаются все новые и новые попытки изучать D-область различными методами. Используют радиоволны, излученные с ракеты, модифицируют идею поглощения радиоволн, усовершенствуют зондовую методику, применяют методы, основанные на тонких эффектах распространения радиоволн, таких, как перекрестная модуляция, частичное отражение, взаимодействие с ионосферной плазмой сверхдлинных радиоволн и т. д. И нет недостатка в профилях, скажем, электронной концентрации, измеренных в разных местах различными приборами в разных условиях. Но беда состоит в том, что, получая в разных измерениях сильно отличающиеся результаты, мы каждый раз должны решать, является ли это отражением реальной изменчивости самой D-области или результатом ошибочности одного из примененных методов.

предыдущая главасодержаниеследующая глава







Статус наследия ЮНЕСКО хотят присвоить уникальной плите с отпечатками динозавров в Боливии

Пять самых маленьких и пять самых больших динозавров

Открыты два новых вида древних южноамериканских млекопитающих

В Китае открыли новый вид меловых млекопитающих, который обладал чертами плацентарных и сумчатых одновременно

В ЮАР найден новый гигантский динозавр

Динозавр, который выглядит как скульптура

Родственник свирепого тираннозавра был менее метра ростом


© GEOMAN.RU, 2001-2021
При использовании материалов проекта обязательна установка активной ссылки:
http://geoman.ru/ 'Физическая география'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь