НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ  



Загадки Голубого озера в КБР остались неразгаданными

В океане зафиксировали аномальные водовороты

Рыбы над головой вместо птиц - открыли первую подводную виллу

У повышения кислотности океанов обнаружились положительные для морских обитателей последствия

Подводный спорт в Балаково скорее мертв, чем жив

Накануне своего 94-го дня рождения, аквалангист - британец совершил рекордное погружение

Где поплавать с аквалангом в Таиланде и получить максимум удольствия




В Антарктиде нашли остатки огромных деревьев

В Антарктиде добыты пробы льда возрастом 2,7 миллиона лет

В ледниках Антарктиды нашли следы древней солнечной мегавспышки

Тающие ледники Антарктиды предложили засыпать искусственным снегом

Сто тысяч лет назад ледовый покров Арктики не таял при гораздо более теплом климате

Удивительная Антарктика в фотографиях Josselin Cornou

Как крымчанин стал покорителем Арктики




Астробиология - ищем жизнь за пределами видимости

Ученые нашли различия между нейронами мозга крысы и человека

Открыт новый вид фотосинтеза, использующий ближний инфракрасный свет

Обнаружены гигантские вирусы с расширенным репертуаром генов для синтеза белка

Новый микроскоп показал работу клеток внутри организма в 3D

Одноклеточные существа изобрели гарпунные пулеметы

Ученые применили технологию CRISPR для смены пола потомства мышей


Народы мира    Растения    Лесоводство    Животные    Птицы    Рыбы    Беспозвоночные   

предыдущая главасодержаниеследующая глава

Что такое "время жизни"

В фотохимии используют известное физическое понятие "время жизни данной частицы" (иона, электрона, нейтрального атома и т.д.).

Время жизни частицы
Время жизни частицы

Оно обозначается обычно τ и представляет собой время, которое частица (назовем ее X) успевает просуществовать между своим рождением в одном процессе и гибелью в другом. Если под "другим" понимается любая реакция, в которой участвует наша частица X, то и т будет просто фотохимическое время жизни, или время жизни относительно фотохимических процессов. Если же под "другим" понимать какую-то конкретную реакцию, то мы получим время жизни относительно этой реакции. Когда имеется несколько реакций, в которых может участвовать данная частица, сравнение соответствующих времен жизни дает нам представление о том, какая из реакций доминирует. Та из них, время жизни относительно которой меньше, будет являться основным процессом гибели частиц X.

Поскольку мы не раз будем оперировать понятием "время жизни"' и сравнивать величину τ для разных процессов, уместно, видимо, пояснить все сказанное примером. Пусть нас интересует, во-первых, время жизни электронов днем на высоте 160 км и, во-вторых, какой из трех процессов рекомбинации -

Радиативная рекомбинация атомных ионов
Радиативная рекомбинация атомных ионов. Формула 6

Рекомбинация атомных ионов при тройных соударениях
рекомбинация атомных ионов при тройных соударениях. Формула 7

Диссоциативная рекомбинация молекулярных ионов
Диссоциативная рекомбинация молекулярных ионов. Формула 8

- определяет гибель электронов на данной высоте.

Первый процесс - радиативная рекомбинация атомных ионов, второй - рекомбинация атомных ионов при тройных соударениях" (М - любая третья частица), а третий - диссоциативная рекомбинация молекулярных ионов. Пусть нам известны константы всех трех процессов и концентрации частиц:

Константы всех трех процессов и концентрации частиц
Константы всех трех процессов и концентрации частиц

Вероятность участия η-частицы (в нашем случае - электрона) в данной реакции равна произведению константы скорости и концентрации других участвующих частиц. Для реакций (6) - (8) это будет выглядеть следующим образом:

Формула 9
Формула 9

Ну а время жизни обратно пропорционально вероятности участия:

Время жизни частиц
Время жизни частиц

Оно и понятно: чем активнее частица участвует в данной реакции (чем больше г)), тем меньше время жизни, и наоборот. Подставляя теперь конкретные значения параметров, получаем:

Конкретные значения
Конкретные значения

Итак, электрону необходимо подождать 5 миллионов секунд (более 10 лет), прежде чем он сможет принять участие в реакции радиативной рекомбинации (6). Для участия в реакции (7) надо ждать еще больше - 5×1010 с. Но ждать столько ему, конечно, не придется: в среднем через 33 секунды после рождения он погибает в акте диссоциативной рекомбинации.

Вот мы и получили ответы на интересовавшие нас вопросы. " Беря наименьшую из полученных величин τ, мы имеем фотохимическое время жизни электрона в наших условиях. Оно равно 33 секундам. Сравнивая времена жизни относительно всех трех процессов, или, что то же, вероятности участия η, мы видим, что в процессах гибели электронов, безусловно, доминирует реакция диссоциативной рекомбинации. Вероятность участия электрона в этой реакции в сотни тысяч раз больше, чем вероятность участия в реакции радиативной рекомбинации или рекомбинации при тройных соударениях.

Мы знаем теперь, что такое фотохимическое время жизни. И нам легко понять, какую важную роль это понятие играет в решении вопроса о том, как взаимодействуют фотохимия и динамика. Ибо динамический процесс может действовать на частицу (перемещать ее), только пока частица живет - в течение времени τ. Следовательно, чем больше τ, тем дальше унесут частицу динамические процессы.

Вернемся к процессам (6) -(8) и рассмотрим такой пример. Пусть на нашей высоте 160 км действует горизонтальный дрейф заряженных частиц вдоль параллели со скоростью 0,1 см/с. И пусть (исключительно для примера!) не существует ни реакции (6), ни реакции (8), а гибель электронов определяется реакцией тройных соударений (7). Время жизни электрона тогда равно 5×1010 с Все это время он будет потихоньку (V = 0,1 см/с) дрейфовать вдоль параллели и отдрейфует на 5×1010×0,1 =5×109 см (!). А это половина земного шара! Ясно, что в этом случае ни о каком фотохимическом равновесии не может быть и речи, ибо в данный . момент в данном месте будут находиться электроны, родившиеся ; в разных местах, в разных условиях и в разное время. Например, не будет разницы между дневными и ночными концентрациями электронов, ибо ночью ионосфера окажется полна электронов, родившихся вчера днем и позавчера днем, и днем много лет назад...

Ну а в реальной ситуации, когда действует диссоциативная рекомбинация и время жизни равно нескольким десяткам секунд? В этом случае, очевидно, электрон за время τ переместится на несколько сантиметров. Много это или мало? Интуитивно все мы, конечно, чувствуем, что это мало и что ничего страшного от этого не произойдет. Но с чем все-таки эти сантиметры сравнивать?

Это и есть основной вопрос проблемы фотохимия - динамика. Оказывается, сравнивать надо с характерными размерами изменения параметров среды. Если электрон из одного места перенесен в другое, но с теми же условиями, ничего не изменится в уравнении фотохимического равновесия. Но если он попал в условия, отличные от начальных - другая плотность нейтральных частиц, а следовательно, иная скорость ионизации, или другая концентрация положительных ионов, следовательно, другая вероятность рекомбинации,- то в этом случае условия фотохимического равновесия уже не будут выполнены, а это и будет означать, что динамика влияет на распределение заряженных частиц.

Остается понять лишь, что же это за характерные размеры, которые мы должны использовать для сравнения. В качестве таких размеров при рассмотрении вертикальных движений принимают высоту однородной атмосферы (о которой мы говорили выше) нейтрального газа Н. Таким образом, если за время т динамика (в данном случае амбиполярная диффузия) переносит электрон (или ион) на расстояние, меньшее Н, условие фотохимического равновесия сохраняется. В случае горизонтальных перемещений определить характерные размеры труднее. Обычно считается, что они составляют десятки километров и что горизонтальный перенос как таковой не влияет заметно на распределение заряженных частиц.

Таков принцип сравнения роли фотохимии и динамики. Если же взяться за конкретные цифры (чего мы здесь делать не будем), то время жизни заряженных частиц на высотах 100 - 200 км днем составит несколько десятков - сотню секунд. При реальных скоростях вертикальных (амбиполярная диффузия) и горизонтальных (дрейф) движений в верхней атмосфере эти процессы не успевают за время τ перенести ионы достаточно далеко, чтобы нарушилось фотохимическое равновесие. Именно поэтому считают, что в дневных условиях на высотах 100 - 200 км влиянием динамических процессов можно пренебрегать. Ночью, когда все концентрации заряженных частиц уменьшаются, падают и вероятности участия, скажем, электронов в реакциях рекомбинации (см. (9)) и возрастает время жизни. В этом случае некоторые процессы переноса могут оказаться существенными. Но о ночной ионосфере на высотах больше 100 км речь пойдет отдельно.

предыдущая главасодержаниеследующая глава





Зелёная Сахара - около 7000 года до нашей эры в Северной Африке начался влажный период

Инверсии магнитного поля Земли могут быть связаны с субдукцией литосферных плит

Составлена карта «подземного мира»

Новый ярус геохронологической шкалы назван в честь префектуры в Японии

Десять островов c уникальной формой

Геологи наблюдали «всплытие» очага крупного землетрясения

Тихий океан поглотил пять островов



Остров Пасхи, Америка и генетика

Оленина и коктейль из крови: чем питаются коренные народы Ямала

Население России сократилось впервые за 10 лет

Последние из тхару: загадочные татуировки у женщин вымирающего племени в Непале

В 1946 году Кенигсберг был включен в состав СССР

Получение высшего образования в США

Афганская традиция «бача пош»: пусть дочь будет сыном



Во время освоения Евразии кроманьонцы еще могли встречать гигантских носорогов эласмотериев

Растения помогли древним бегемотам распространиться по Африке

Ядер нет. Ученые опровергли возможность клонирования мамонта

Ротовая полость древних земноводных содержала тысячи крошечных зубов

В Австралии обнаружили останки гигантского трилобита

Молодой теропод накормил своей тушей морских беспозвоночных

Конфискованная находка рассказала о социальном поведении овирапторных динозавров


© GEOMAN.RU, 2001-2021
При использовании материалов проекта обязательна установка активной ссылки:
http://geoman.ru/ 'Физическая география'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь