НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ  







Народы мира    Растения    Лесоводство    Животные    Птицы    Рыбы    Беспозвоночные   

предыдущая главасодержаниеследующая глава

Как много разных ионов...

Следующим важным параметром после электронной концентрации является ионный состав. Ведь если все электроны одинаковы, то ионов наблюдается много и разных. И они сильно различаются по массе, химическим свойствам, даже размерам. Вопрос о том, из каких именно ионов состоит ионосфера на данном уровне, имеет, как мы увидим, очень большое значение для аэрономии.

В области Е ионосфера состоит целиком из ионов NO+ и O2+ (см. рисунок). Днем эти ионы представлены на высотах 100-130 км примерно в равных количествах ([NO+]/[0+]≈1). Ночью доля ионов NO+ возрастает и отношение [NO+]/[0+] может достигать 5-8.

Картина изменения ионного состава в области Е была бы очень простой и понятной, если бы время от времени там не появлялись так называемые метеорные ионы. Здесь нам придется сделать небольшое отступление и рассказать об этом интересном явлении в верхней атмосфере.

Изменения ионного состава в области Е
Изменения ионного состава в области Е

В ряде масс-спектрометрических экспериментов (впервые это сделал советский ученый В. Г. Истомин в 1961 году) были обнаружены наряду с обычными азотно-кислородными ионами также неожиданные для атмосферы ионы: Na+, Fe+, К+, Ca+, Mg+, A1+, Si+ и т. д. Большинство из них- ионы металлов, поэтому их так и стали называть ионами металлов или металлическими ионами. Но среди них есть и кремний - неметалл, поэтому такое название не совсем точно. Предполагая, что эти ионы появляются в результате испарения в верхней атмосфере микрометеоров, их стали называть метеорными ионами- название также не совсем точное, поскольку метеорная природа этих ионов окончательно не доказана и обсуждаются и другие источники их происхождения. За неимением лучшего мы будем пользоваться этим последним названием, помня, однако, о его некой условности.

Метеорные ионы
Метеорные ионы

Метеорные ионы появляются обычно на профилях распределения ионных концентраций в виде узких слоев с полушириной в несколько километров или даже сотни метров и с очень большим градиентом концентрации от максимума к краям слоя. Как правило, концентрация этих ионов примерно на порядок меньше, чем концентрация основных ионов N0+ и 0+ (такой случай изображен на рисунке внизу). При этом метеорные ионы практически не влияют на профиль электронной концентрации. Однако наблюдаются ситуации, когда концентрация этих ионов в максимуме сравнима с концентрацией ионов 0+ и N0+ в окрестностях слоя или даже превышает ее (см. рисунок на стр. 34). В этом случае метеорные ионы влияют на основные ионосферные характеристики двояко. Во-первых, появляется пик на профиле электронной концентрации, соответствующий пику метеорных ионов. Во-вторых, внутри узкого слоя этих ионов резко уменьшаются (часто ниже границы чувствительности масс-спектрометра) концентрации обычных ионов 0+ и N0+.

Наблюдения концентрации этих ионов
Наблюдения концентрации этих ионов

Хотя слои метеорных ионов регистрировались примерно в двух десятках масс-спектро-метрических экспериментов, закономерность их появления все еще плохо понятна. Известно лишь, что чаще всего эти слои появляются в двух высотных интервалах: 92 - 93 и 105 - 110 км. Однако регистрировались такие слои и на других высотах, практически во всей области от 80 до 140 км. Другая особенность этих слоев - одновременное появление нескольких различных ионов (скажем, Mg+, Fe+, Na+) внутри одного слоя. При этом относительная концентрация метеорных ионов может быть различна - в одних случаях в слое доминирует Fe+, в других - Mg+, а иногда слой может состоять, скажем, практически из ионов Na+ с небольшой добавкой К+, Са+ или других ионов. В целом, чаще в таких слоях встречаются, ионы магния и железа.

Относительная концентрация метеорных ионов
Относительная концентрация метеорных ионов

Что касается физикохимии метеорных ионов, то она все еще известна очень плохо. Единственное, что представляется несомненным - это роль механизма ветрового сдвига (см. главу 4, о ночной ионизации выше 100 км) в формировании узких слоев указанных ионов и связь их с появлением спорадического слоя Es.

Но вернемся к описанию "нормального" ионного состава. Двигаясь вверх от области Е, мы обнаружим, что относительное количество (т. е. доля [NO+]/[e] и [0+]/[е] ионов N0+ и 0+ начинает уменьшаться. Их вытесняют ионы атомного кислорода, которые уверенно регистрируются с высот 130 - 140 км. Относительная концентрация ионов 0+ быстро возрастает с высотой и уже на высотах 170 - 190 км днем количество ионов 0+, с одной стороны, и NO+ и О2+ - с другой, оказывается равным. Выше безраздельно доминируют ионы 0+ и ионосфера становится практически чисто атомной. Однако ионы N0+ и О+ прослеживаются масс-спектрометром до больших высот - в максимуме области F2 их концентрация составляет около 1% общей концентрации ионов. И это, как мы увидим, очень важно. Ведь молекулярные ионы очень активные участники процесса рекомбинации. Даже в таких малых относительных количествах они все еще играют первую скрипку в рекомбинаций в слое F2.

Почти одновременно с ионами О+ на масс-спектрах начинают появляться ионы атомного и молекулярного азота (N+ и N2+). Ионы N+ ведут себя как младший партнер ионов атомного кислорода - высотный профиль N+ довольно точно повторяет профиль ионов О+, однако концентрация составляет около 10% от [О+]. Ионы N+ образуют в ионосфере типичный слой с максимумом на высотах 180 - 220 км, причем эти ионы всегда остаются малой ионной компонентой - их относительная концентрация обычно не превосходит 10 - 15 %.

Коонцентрация ионов О+
Коонцентрация ионов О+

Выше максимума области F2 к безраздельно господствующим там ионам О+ начинают примешиваться ионы гелия, а потом и водорода. Ионы гелия не в силах составить достойной конкуренции ионам 0+ и так и остаются малой ионной компонентой, достигая максимальной относительной концентрации 10-20% на высотах 500 - 600 км. А вот относительная концентрация ионов водорода неуклонно растет с высотой и наступает момент (точнее, высота), где концентрации Н+ и 0+ сравниваются. Выше доминируют ионы Н+. Это и есть протоносфера.

Ночью изменение ионного состава с высотой происходит в принципе так же, с той лишь разницей, что смена режима от молекулярных ионов к 0+ происходит на больших высотах. Ионы N+ и N2+, как правило, ночью не регистрируются.

Концентрация ионов
Концентрация ионов

Все, что мы рассказали здесь об изменении ионного состава с высотой, отображено на двух рисунках на стр. 35 (для дня и ночи соответственно). На этих рисунках показано относительное содержание всех рассмотренных ионов, причем ширина области, занятой данным ионом на данной высоте, равна его относительной концентрации в процентах. Например, на высоте 200 км днем [0+]/[е] = 45 %; [N+]/M = 5% ; [N2+ ]/[е] =10%; [NO+]/[e]=20 % и[О2+]/[е] = 20%.

предыдущая главасодержаниеследующая глава







© GEOMAN.RU, 2001-2021
При использовании материалов проекта обязательна установка активной ссылки:
http://geoman.ru/ 'Физическая география'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь