НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ  







Народы мира    Растения    Лесоводство    Животные    Птицы    Рыбы    Беспозвоночные   

предыдущая главасодержаниеследующая глава

Эндогенные процессы минералообразования

Наши знания об эндогенных процессах минералообразования основываются на представлениях о деятельности магматических очагов, располагающихся в нижних частях земной коры. Сами процессы, совершающиеся на значительных глубинах, недоступны нашему наблюдению. Лишь в районах действующих на земной поверхности вулканов мы можем получить некоторые данные, позволяющие иметь суждения о глубинных процессах. С другой стороны, данные изучения состава, структурных особенностей, условий залегания и взаимоотношений различных изверженных пород и пространственно связанных с ними месторождений полезных ископаемых также дают возможность получить некоторые представления (в соответствии с физико-химическими законами) о закономерностях, свойственных эндо-генным процессам минералообразования.

Согласно этим представлениям, магмы являются сложными по составу силикатными огненно-жидкими расплавами, в которых принимают участие и летучие составные части.

В тех случаях, когда значительные массы магмы в силу тех или иных причин, не достигая самой поверхности, проникают в верхние части земной коры, они под большим внешним давлением подвергаются медленному остыванию и диференциации, продукты которой в результате кристаллизации дают начало различным изверженным силикатным породам. При этом тяжелые металлы (такие, как Sn, W, Mo, Au, Ag, Pb, Zn, Сu и др.), присутствующие в магмах в ничтожных количествах, с летучими компонентами (H2O, S, F, Cl, В и др.) образуют летучие соединения и по мере кристаллизации магмы концентрируются в верхних частях магматических очагов. В одних случаях с их помощью образуются остаточные силикатные растворы, при кристаллизации которых возникают так называемые пегматиты, содержащие минералы с F, В, Be, Li, Zr, а иногда с редкоземельными элементами, и др. В других случаях они в виде газообразных продуктов удаляются из магматических очагов, оказывая сильные контактные воздействия на вмещающие породы, с которыми вступают в химические реакции. Наконец, в виде водных растворов-гидротерм - они уносятся вдоль трещин в кровлю над магматическими массивами, образуя нередко богатые месторождения главным образом металлических полезных ископаемых.

Лишь немногие тяжелые металлы остаются в магме и в процессе ее диференциации концентрируются в некоторых горных породах внутри магматических массивов.

В тех случаях, когда магма достигает земной поверхности и изливается в виде лав, летучие компоненты, освобождающиеся при этом, уходят в атмосферу.

В соответствии с указанной последовательностью развития магматического цикла явлений различают следующие этапы эндогенных процессов минералообразования:

  1. магматический (в собственном смысле слова),
  2. пегматитовый и
  3. пневматолито-гидротермальный.

1. Магматические процессы совершались во все геологические эпохи и приводили к образованию огромных масс изверженных горных пород.

По условиям образования различают прежде всего две главные группы этих пород:

  • а) эффузивные (экструзивные), т. е. излившиеся на земную поверхность в виде лав или застывшие в непосредственной близости ее в условиях низкого внешнего давления, и
  • б) интрузивные, застывшие на глубине под высоким давлением в виде больших грибообразных, пластообразных и неправильной формы массивов.

Эффузивные породы при быстром остывании не успевают полностью раскристаллизоваться и потому в своем составе содержат в том или ином количестве вулканическое стекло и часто обильные округлые пустоты (в пузыристых лавах), свидетельствующие о выделении газообразных продуктов вследствие резкого уменьшения внешнего давления. Интрузивные породы, наоборот, представляют собой полнокристаллические породы.

Явления диференциации в магмах, как было указано, приводят к образованию различных по химическому и минеральному составу и удельному весу горных пород. В зависимости от содержания кремнезема и других компонентов среди изверженных пород различают:

  • а) ультраосновные, богатые MgO и FeO, но наиболее бедные SiO2 (дуниты, пироксениты - в интрузивных и пикриты - в эффузивных комплексах);
  • б) основные, более богатые SiO2 и богатые Al2O3 и CaO, но более бедные MgO, FeO (габбро, нориты - в интрузивных и базальты, диабазы, порфириты - в эффузивных комплексах), и
  • в) кислые, богатые SiO2 и обогащенные щелочами, но более бедные по сравнению с предыдущими CaO, FeO, MgO (граниты, гранодиориты и другие породы - в интрузивных, липариты, кварцевые порфиры и прочие породы - в эффузивных комплексах).
Рис. 50. Диаграмма химических составов главнейших интрузивных изверженных пород
Рис. 50. Диаграмма химических составов главнейших интрузивных изверженных пород

На рис. 50 представлены данные о содержании элементов в виде различных окислов для главнейших представителей интрузивных пород.

На этой диаграмме легко видеть, как меняется состав ультраосновных, основных и кислых изверженных горных пород. Особняком от них стоит лишь семейство нефелиновых сиенитов, богатых щелочами (Na2O и K2O и Al2O3, но более бедных SiO2, CaO, FeO и MgO.

В ряде интрузивных массивов, где диференциация магмы проявилась более совершенно, кислые разности пород располагаются в верхних частях, а более тяжелые по удельному весу основные и ультраосновные породы-в более глубоких частях, у постели массивов.

Рудные месторождения магматического происхождения встречаются лишь в ультраосновных и основных изверженных породах. К ним принадлежат месторождения Cr, Pt и других металлов платиновой группы, Cu, Ni, Co, Fe, Ti и др. а из неметаллических полезных ископаемых - месторождения алмаза, фосфора в щелочных породах и др.

2. Процессы образования пегматитов протекают в верхних краевых частях магматических массивов и притом в тех случаях, когда эти массивы формируются на больших глубинах (несколько километров от поверхности Земли), в условиях высокого внешнего давления, способствующего удержанию летучих компонентов в магме в растворенном состоянии.

Пегматиты как геологические тела* наблюдаются в виде жил или неправильной формы залежей, иногда штоков, характеризующихся необычайной крупнозернистостью минеральных агрегатов. Мощность жилообразных тел достигает нередко нескольких метров, а по простиранию они обычно прослеживаются на десятки, реже сотни метров. Большей частью пегматитовые тела располагаются среди материнских изверженных пород, но иногда встречаются в виде жилообразных тел и во вмещающих данный интрузив породах.

*(С этим понятием о пегматите нельзя смешивать чисто структурный термин "пегматит", как смесь кварца и полевого шпата, закономерно проросших друг друга и, притом, в определенных количественных соотношениях ("письменный гранит", "еврейский камень"). Подобные образования распространены главным образом в гранитных пегматитах, топаз, турмалин), минералы бериллия (берилл), лития (литиевые слюды), иногда редких земель, ниобия, тантала, олова, вольфрама и др)

Необходимо указать, что пегматитовые образования наблюдаются среди интрузивных пород самого различного состава, начиная от ультраосновных и кончая кислыми. Однако наибольшим распространением пользуются пегматиты в кислых и щелочных породах. Пегматиты основных пород не имеют практического значения.

По своему составу пегматиты немногим отличаются от материнских пород - главная масса их состоит из тех же породообразующих минералов. Лишь второстепенные (по количеству) минералы, да и то не во всех типах пегматитов, существенно отличаются по составу, так как содержат в себе ценные редкие химические элементы, часто в ассоциации с минералами, содержащими летучие компоненты. Так, например, в гранитных пегматитах в дополнение к главнейшим породообразующим минералам (полевые шпаты, кварц, слюды) наблюдаются фтор- и борсодержащие соединения

Рис 51. Строение пегматитовой жилы Мурзинка (Урал). По A. E. Ферсману, 1 - гранит, 2 - зона аплита, 3 - 'письменный гранит'; 4 - крупнокристаллические массы полевого шпата и кварца, 5 - 'занорыш' (полость с друзами кристаллов)
Рис 51. Строение пегматитовой жилы Мурзинка (Урал). По A. E. Ферсману, 1 - гранит, 2 - зона аплита, 3 - 'письменный гранит'; 4 - крупнокристаллические массы полевого шпата и кварца, 5 - 'занорыш' (полость с друзами кристаллов)

Во многих пегматитовых телах наблюдается зональное строение и довольно закономерное распределение минералов. Например, в пегматитах Мурзинского района на Урале (рис. 51) внешние зоны у контакта с вме-щающими гранитами сложены светлой тонкозернистой породой (аплитом). Ближе к центральной части жилы они сменяются зонами "письменного гранита" (кварца и полевого шпата, закономерно проросших друг друга). Далее следуют зоны крупнокристаллических масс полевого шпата и кварца. В центральных участках пегматитовой жилы встречаются полости ("занорыши"), стенки которых устланы друзами крупных хорошо образованных кристаллов горного хрусталя, топаза и других драгоценных камней.

В тех случаях, когда пегматиты проникают во вмещающие интрузив породы, особенно богатые щелочными землями (MgO, CaO), их минеральный состав существенно отличается от состава пегматитов, залегающих в материнских породах. Парагенезис минералов в этих случаях указывает на активные реакции, про-исходившие в процессе взаимодействия растворов с вмещающими породами. Устанавливаются такие ассоциации минералов, в составе которых участвуют не только элементы магмы (Si, Al, щелочи и др.), но и боковых пород (MgO и CaO), которые на контакте с пегматитами сами сильно изменяются. Такого рода пегматиты, по классификации А. Е. Ферсмана, относятся к пегматитам "линии скрещения", в отличие от вышерассмотренных "пегматитов чистой линии".

Происхождение пегматитов еще нельзя считать до конца разгаданным. А. Е. Ферсман рассматривал их как продукт кристаллизации остаточных расплавов, обогащенных летучими соединениями. В последнее время А. Н. Заварицкий на основании физико-химических соображений допускает возможность образования крупнокристаллических масс путем перекристаллизации под влиянием газов магматического остатка, получающегося в процессе кристаллизации материнской магмы. Однако в том и другом случаях пегматиты образуются в конце собственно магматического процесса и занимают как бы промежуточное положение между глубинными магматическими породами и рудными гидротермальными месторождениями.

3. Пневматолито-гидротермальные процессы по существу являются уже явно постмагматическими, т. е. протекают после того, как главный процесс кристаллизации магмы в глубинном массиве в основном закончился.

Явления пневматолиза ("пневма" по-гречески - газ) могут иметь место в тех случаях, когда расплавы, насыщенные летучими компонентами, кристаллизуются в условиях сильно пониженного внешнего давления. Вследствие этого в известный момент возникает парообразование и происходит дестилляция (перегонка) вещества. Процессы этого рода должны совершаться в тех случаях, когда магмы застывают на средних или небольших глубинах, либо при извержениях у земной поверхности.

Рис. 52. Схема геологического разреза контактово метасоматического месторождения Черным показаны рудные залежи (магнетитовые руды)
Рис. 52. Схема геологического разреза контактово метасоматического месторождения Черным показаны рудные залежи (магнетитовые руды)

В первом случае летучие соединения устремляются к вмещающим породам и, химически реагируя с ними, производят так называемый контактовый метаморфизм. При этом в боковых породах и в кровле, пропитывающихся растворами, протекают химические реакции. Степень метаморфизма и состав получающихся продуктов в значительной мере зависят не столько от температуры сколько от химической активности раствора и состава реагирующих с ними пород. Наблюдениями установлено, что наиболее интенсивные изменения происходят среди контактирующих с магматическими массивами известняков и других известковистых пород. В результате реакций в этих случаях путем замещения или, как говорят, метасоматоза образуются так называемые скарны (рис. 52), состоящие преимущественно из силикатов Ca, Fe, Al и др. Химический состав их показывает, что источником для их образования послужили как вмещающие породы (известняки, доломиты и др.), так и составные части магмы. Характерно, что вдоль контакта, как это показали наши ученые (А. Н. Заварицкий и Д. С. Коржинский), одновременно происходит изменение и в интрузивных породах, успевших застыть к моменту проявления описываемого процесса. При этом минералы магматических пород замещаются новообразованиями, состав которых показывает, что имеет место привнос элементов из карбонатных толщ (Ca, Mg). В связи со скарнами нередко образуются крупные месторождения (рис. 52) железа (гора Магнитная на Ю. Урале), иногда вольфрама, молибдена и некоторых других металлов.

Во втором случае, т. е. когда магмы извергаются на земную поверхность, явления пневматолиза, естественно, достигают максимального значения. Огромные количества летучих соединений выносятся в атмосферу. Однако в трещинах остывших лав, на стенках кратеров вулканов и в окржающих других породах часто можно наблюдать образование продуктов возгона (сублимации) таких минералов, как самородная сера, нашатыРb, минералы бора и др. Отмечаются и метасоматические реакции, но они выражены слабее, нежели в предыдущем случае.

Рис. 53. Общая схема расположения гидротермальных образований Крестиками показаны изверженные породы
Рис. 53. Общая схема расположения гидротермальных образований Крестиками показаны изверженные породы

Гидротермальные процессы в глубинных условиях развиваются в кровле, на некотором удалении от непосредственного контакта с изверженными породами. Остаточные парообразные растворы, используя для своего продвижения системы трещин, возникающих при внедрениях магмы в кровле магматических очагов (рис. 53), постепенно охлаждаются, сжижаются, превращаясь в горячие водные растворы-гидротермы.

Наиболее благоприятные условия для проявления гидротермальных процессов создаются на малых и средних глубинах (до 3-5 км от поверхности). Главная масса гидротермальных образований пространственно и генетически связана с интрузивами кислых пород (гранитов, гранодиоритов и др.). Сфера циркуляции раствора, начинаясь почти от верхних частей магматических очагов, достигает иногда дневной поверхности. В районах проявления недавнего вулканизма до сих пор действуют горячие минерализованные источники, отлагающие кремнистые осадки с весомыми количествами сернистых соединений Hg, Sb, As, Pb, Cu и др. (Стимбот-Спрингс в Неваде, Сольфор-Бэнк в Калифорнии и др.).

По мере удаления от магматических очагов в сторону земной поверхности гидротермальные растворы встречают среду, постепенно обогащающуюся кислородом; при этом внешнее давление соответственно падает; температуры снижаются предположительно от 400 до нескольких десятков градусов. Эти факторы, естественно, влияют на ход химических реакций и на минеральный состав гидротермальных образований. По преобладанию тех или иных ассоциаций минералов эти образования совершенно условно делят на высоко-,средне- и низкотемпературные. Это, конечно, не означает того, что среди высокотемпературных образований не могут встречаться ассоциации минералов, кристаллизующихся при низких температурах. Даже в пегматитах и контактово-метаморфических образованиях всегда устанавливаются более низко-температурные минералы гидротермального происхождения. Они свидетельствуют лишь о заключительных стадиях процесса отложения минералов, начавшегося при высоких температурах.

Образование гидротермальных растворов продолжается, очевидно, весьма длительное время - в течение всей жизни магматического очага. На основании анализа фактических данных о соотношениях различных месторождений, составляющих один рудный узел, C.C.Смирнов пришел к выводу о пульсирующем, прерывистом движении рудоносных растворов. Об этом говорят нередко наблюдающиеся признаки наложения более поздних этапов минерализации на более ранние.

Рис. 54. Серия маломощных кварцевых жил, обнаженных в обрыве По Д. И. Щербакову. Белое слева - снег
Рис. 54. Серия маломощных кварцевых жил, обнаженных в обрыве По Д. И. Щербакову. Белое слева - снег

Формы минеральных тел зависят от конфигурации выполняемых пустот и, отчасти, от состава горных пород, в которых происходит циркуляция растворов. В случае заполнения трещин образуются прерывающиеся жилы (рис. 54), корни которых иногда залегают в верхних частях магматических массивов. При отложении минералов в мельчайших порах и пустотах образуются вкрапленники. Если растворы на своем пути встречают химически легко реагирующие породы (например, известняки), то возникают часто неправильной формы метасоматические залежи. Если растворы внезапно попадают в большие раскрывшиеся полости, то вследствие резкого уменьшения давления должно происходить массовое испарение растворителя (воды), а в связи с этим, по крайней мере в первое время, резкое пересыщение растворов и выпадение коллоидальных масс. Действительно, признаки метаколлоидных образований на стенках жил встречаются очень часто, особенно в тех случаях, когда эти процессы были связаны с неглубоко залегающими интрузивами. Широко распространены также пустоты с друзами различных кристаллов.

Минеральный состав гидротермальных месторождений крайне разнообразен. Жилы в подавляющем большинстве случаев представлены массами кварца, которые включают в себе скопления разнообразных минералов, чаще всего сернистых соединений металлов. Нужно сказать, что именно из гидротермальных месторождений добывается главная масса руд редких (W, Mo, Sn, Bi, Sb, As, Hg отчасти Ni, Со), цветных (Cu, Pb, Zn), благородных (Au и Ag), а также радиоактивных металлов (U, Ra, Th).

предыдущая главасодержаниеследующая глава







© GEOMAN.RU, 2001-2021
При использовании материалов проекта обязательна установка активной ссылки:
http://geoman.ru/ 'Физическая география'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь