НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ  



Океанологи из США выяснили, почему морские черепахи едят пластиковый мусор

Биологи научились контролировать движения медуз и ускорили их втрое

В Италии вырастили подводный огород

Что увидели дайверы на дне дикого озера Марий Эл?

Известный исследователь Энрик Сала рассказал о проблемах мирового океана

Стартовала самая масштабная миссия по очистке океана от пластикового мусора

На Гавайских островах обнаружены кораллы, способные пережить глобальное потепление




Тающие ледники Антарктиды предложили засыпать искусственным снегом

В антарктическом леднике обнаружена полость размером с город

Ученые нашли озеро жидкой лавы на заснеженном острове около Антарктиды

Исследование показало, что Антарктиду, помимо глобального потепления, плавят подземные источники

В Арктике древние люди уже 9 тысяч лет назад совершали длительные походы и торговали

Представлена новая и самая детальная карта Антарктиды

Десять невероятных фактов о жизни на Южном полюсе




Бактерии в организме человека обмениваются генами быстрее, чем это наблюдается в природе

Новое древо жизни включит «симбиомов» как отдельные организмы

Ученые перенесли воспоминания от одной улитки другой

В ходе эволюционного эксперимента патогенный гриб превратился в полезного симбионта

Открыт новый вид фотосинтеза, использующий ближний инфракрасный свет

Эксперимент показал медузы тоже умеют спать

Открыто новое царство эукариотов


Народы мира    Растения    Лесоводство    Животные    Птицы    Рыбы    Беспозвоночные   

15.12.2017

Искусственный интеллект строит карты месторождений

Ученые из Кольского научного центра РАН разработали метод автоматического трехмерного картирования месторождений полезных ископаемых. Это позволит геологам точнее планировать разработку месторождений и увеличит количество извлекаемых полезных компонентов. Результаты последней работы ученых опубликованы в журнале Scientific Reports и представлены на Юбилейном съезде Российского минералогического общества «200 лет РМО». Исследования поддержаны грантом Российского научного фонда (РНФ), о них рассказывается в пресс-релизе РНФ.

«Воззрения геолога, а именно научная школа, к которой он принадлежит, очень сильно влияют на то, как он описывает месторождение. Существуют международные классификации для отдельных пород, но при полевых исследованиях ученые картируют горизонты, пачки, слои, толщи, которые являются уже комплексами пород. А как выделить комплекс – это воля художника. Так, на одной территории, для одних и тех же пород могут быть выделены разные пачки. И чтобы совместить выделенные разными людьми комплексы пород, иногда необходимо проводить дополнительные исследования. Предложенная методика позволит преодолеть эту субъективность», – рассказывает первый автор статьи, кандидат геолого-минералогических наук Андрей Калашников.

Ученые подробно исследовали химический и минеральный состав фоскоритовых руд из Ковдорского массива (Мурманская область). Фоскорит – глубинная порода, минералы которой являются источником железа (Fe), циркония (Zr) и фосфора (P). Например, из минерала магнетита получают железную руду, из бадделеита извлекают цирконий, а из апатита – фосфор. Ученые исследовали химический состав 550 образцов фоскоритов, которые были получены при бурении Ковдорского месторождения.

Авторы работы предложили четыре способа определения минерального состава породы по результатам химических анализов. Это означает, что можно выяснить, из каких минералов, рудных и нерудных, состоит горная порода, зная только химический (валовый) состав породы.

Первоначально ученые рассчитали состав пород без примесей. Вторым способом расчета распространения минералов был учет влияния нескольких независимых параметров на распространение каждого минерала (множественная линейная регрессия).

Третий метод предсказания минерального состава основан на определении типа породы по химическому составу с помощью искусственной обучающейся нейронной сети. Для обучения использовали партию образцов, 30% из которых имели известный состав и являлись тестовыми и проверочными. В расчетах использовали несколько функций, из которых выбрали наиболее походящую, сравнив полученные результаты с геологическими данными.

Четвертым способом стала логическая схема оценки типов породы. Это своего рода контролируемое обучение или «распознавание образов», которое происходит под руководством человека. В зависимости от химического состава пород их последовательно делят на группы по минеральному составу. Для всех расчетов ученым достаточно мощного персонального компьютера.

Авторы сравнили все четыре способа расчета минерального состава и построили трехмерные карты распространения типов фоскоритов, сопоставив их с описаниями пород, предоставленными геологической службой Ковдорского горно-обогатительного комбината. Оказалось, что прогнозы расположения пород, полученные методом расчета состава без примесей и методом учета нескольких параметров, не соответствовали геологическим данным о взаимоотношениях пород. Таким образом, ученые доказали, что эти методы нецелесообразно использовать.

А вот трехмерные карты, полученные при работе с обучающейся нейросетью и логической оценкой типов породы, хорошо сходятся с данными геологической службы. По мнению ученых, эти методы помогут достаточно быстро создавать более точные, унифицированные модели месторождений. При этом на созданные карты не будет влиять «человеческий фактор»: существующие и порой противоречащие друг другу научные концепции о происхождении объекта, а также выделение разного количества типов пород разными геологами.

Полученная на основании имеющихся результатов трехмерная карта Ковдорского месторождения является базисом для геометаллургической модели месторождения и позволит улучшить качество добываемой руды, а также извлекать другие полезные элементы, например, скандий. В дальнейшем ученые из Кольского научного центра планируют применить новые подходы для Ловозерского месторождения (Мурманская область) и Большетроицкого железорудного месторождения (Белгородская область).

Помимо практического применения и улучшения качества добываемой руды, построение достоверных моделей геологических объектов поможет ответить на фундаментальные научные вопросы. «Точные модели месторождений позволят лучше понять их происхождение, а значит, приблизят нас к пониманию работы всей системы "планета Земля"», – считает Андрей Калашников.


Источники:

  1. polit.ru





Новый ярус геохронологической шкалы назван в честь префектуры в Японии

Раскрыто прошлое старейших континентов Земли

Инверсии магнитного поля Земли могут быть связаны с субдукцией литосферных плит

Ученый назвал 5 самых опасных вулканов в мире

Древнейшие образцы льда рассказали об изменениях концентрации углекислого газа в атмосфере

Искусственный интеллект будет следить за вулканами

Потепление Мирового океана может увеличить частоту экстремальных штормов



Население России сократилось впервые за 10 лет

Инициация через самоистязание: Жуткий средневековый пережиток, практикуемый в XXI веке

Монголия и Эфиопия обогнали Россию по выживаемости взрослых

Получение высшего образования в США

Рождаемость в России продолжает снижаться, а возраст рожениц — повышаться

Оленина и коктейль из крови: чем питаются коренные народы Ямала

Географы создали карты, отражающие изменения поверхности Земли за последние 25 лет



Во время освоения Евразии кроманьонцы еще могли встречать гигантских носорогов эласмотериев

В Сибири нашли голову волка, жившего в ледниковый период

Мисс Лия — королева сапиенсов

Представлен практически полный скелет австралопитека

В Китае открыли новый вид меловых млекопитающих, который обладал чертами плацентарных и сумчатых одновременно

Пять самых маленьких и пять самых больших динозавров

Ротовая полость древних земноводных содержала тысячи крошечных зубов


© GEOMAN.RU, 2001-2021
При использовании материалов проекта обязательна установка активной ссылки:
http://geoman.ru/ 'Физическая география'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь