НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ  







Народы мира    Растения    Лесоводство    Животные    Птицы    Рыбы    Беспозвоночные   

предыдущая главасодержаниеследующая глава

О чем рассказал океан

Грандиозные события, приведшие к образованию современного рельефа Средиземноморья, происходили на фоне столь же грандиозных изменений климата Земли, причины которых еще не до конца поняты. Одна из основных задач палеогеографов - определить характер и величины климатических изменений (как говорят ученые, построить "климатическую модель"), влияние климата на растительность, животный мир континентов и океанов.

Крайне важные сведения относительно климата прошедших эпох были получены в результате изучения глубоководных отложений.

Океан богат самыми разнообразными формами жизни. Некоторые из представителей животного мира очень чутко реагируют на изменения среды, в частности температурного режима. Изучение видового и количественного состава этих организмов в слоях глубоководных отложений океана может дать неоценимую информацию о закономерностях изменений климата.

Наиболее широко распространенными биогенными отложениями на поверхности морского дна являются карбонатные илы, которые состоят из раковин планктонных организмов. Из разнообразных семейств, образующих илы, наибольший интерес для палеогеографов представляют фораминиферы - мельчайшие организмы, которые населяют верхнюю 200-метровую толщу океана. В настоящее время известно около 20 тыс. видов фораминифер. Большая часть их имеет четкие экологические зоны обитания, совпадающие с климатическими зонами. Исходя из видового состава и численности фораминифер, содержащихся в пробах, взятых из различных слоев морских отложений, ученые рассчитывают температуру прошлых эпох.

Расчеты достаточно просты. Каждая климатическая зона океана характеризуется одним или несколькими типичными видами фораминифер, причем для каждого вида определена температура наиболее благоприятная для его развития. На основании этих закономерностей вычисляют температуры бассейнов. При достаточно большом числе проб этот метод дает вполне удовлетворительные результаты (погрешность в пределах 3°С).

Другой метод палеоэкологической реконструкции основан на оценке видового разнообразия. Замечено, что в пробах, взятых в тропических районах океана, разнообразие видов микроорганизмов наиболее велико; наименьшее оно в пробах, взятых в полярных районах. Следовательно, видовое разнообразие можно использовать как показатель температур. Однако этим методом следует пользоваться осторожно. Известно, что преобладание какого-либо одного вида при высокой общей численности микроорганизмов характерно для стрессовых (угнетенных) условий, возникающих в замкнутых лагунах, опресненных окраинных морях или же в загрязненных водоемах.

Наряду с чисто биологическими методами все большее значение в исследовании донных отложений приобретают физико-химические методы. Среди них особое место занимает анализ изотопов кислорода. Более 30 лет назад известный американский физикохимик Г. Юри установил, что карбонаты одного и того же состава имеют различное соотношение изотопов кислорода (18O и 16O) в зависимости от температуры морской воды, в которой они образовались. Позднее эту закономерность стали использовать для расчета палеотемператур Мирового океана. Измерения соотношения изотопов кислорода в раковинах позволили обнаружить зависимость этой величины от температуры воды, в которой они развивались. Для каждого моллюска определяют соотношение изотопов кислорода. Полученные результаты сравнивают со "стандартными" значениями (средним соотношением изотопов кислорода в морской воде). На основании подсчета отклонений концентраций изотопов 18O/16O в морских раковинах построены палеотемпературные кривые для различных районов Мирового океана.

Морские организмы не единственный материал для такого анализа. Очень интересные результаты получены при исследовании соотношений изотопов кислорода в пробах льда, взятых из ледяных панцирей Антарктиды и Гренландии. Изучение этих образцов позволило восстановить наиболее полную климатическую летопись последних глав истории Земли. Но и этот метод не лишен недостатков. Отмечено, что на соотношение изотопов кислорода, помимо температур, влияет и соленость морских вод. Это необходимо учитывать при палеоклиматических реконструкциях.

В результате анализа целого ряда данных вырисовывается достаточно определенная картина развития климатической обстановки на протяжении кайнозоя. Общее направление изменения климата - похолодание, хотя на этом фоне были и отдельные колебания - относительные потепления и вновь похолодания. Рассмотрим несколько подробнее, как менялся климат за последние 70 млн лет (в основном по данным, полученным в ходе изучения отложений Атлантического океана).

В палеоцене (67-60 млн лет назад) климат был очень теплым, даже в субарктических районах средняя температура поверхностных вод превышала 15° С. На протяжении эоцена-раннего олигоцена (60-35 млн лет) температура океана понизилась на 10°. В среднем миоцене (15-11 млн лет назад) началось значительное падение температур, причем наиболее резкие изменения в соотношении изотопов кислорода произошли 14,8-14,5 млн лет назад. С этого времени происходит постоянное охлаждение нашей планеты, сопровождаемое образованием и разрастанием ледниковых покровов: сперва в арктических, затем в умеренных широтах.

Существует множество гипотез, пытающихся объяснить катастрофические оледенения на нашей планете. Одна из наиболее популярных гипотез, опирающаяся на астрономические наблюдения, связывает такое явление с периодическими изменениями параметров орбиты Земли - колебанием эксцентриситета и наклона оси Земли к плоскости вращения. Однако этим можно объяснить чередование оледенений и межледниковий, а не общее и продолжительное охлаждение планеты: данные параметры изменяются регулярно, оледенения же случаются сравнительно редко. Некоторые специалисты видят причину оледенений, охватывавших огромные площади Земли, в более крупномасштабных явлениях, связанных с эволюцией галактик. Но современная наука слишком мало знает об этих процессах, чтобы всерьез привлекать их для объяснения чисто земных явлений. Возникновение оледенений часто связывают с горообразованием. Действительно, почти все известные периоды продолжительных оледенений совпадают или непосредственно следуют за крупными циклами образования горных массивов. В течение этих циклов значительные массивы суши поднимались и оказывались выше снеговой линии. Это могло вызвать появление крупных ледников в горах. Более того, образование гор сопровождалось мощными извержениями вулканов. В атмосферу выбрасывались огромные массы вулканической пыли. Насыщенная пылью атмосфера экранировала солнечное тепло, что могло вызвать охлаждение поверхностного слоя Земли и способствовать развитию оледенения. Имеются данные, согласно которым существенные похолодания климата за последние 100 лет непосредственно следовали за крупными извержениями вулканов.

Палеотемпературная кривая палеогена (05-20 млн. лет назад) для Южной Атлантики [Shackleton, 1986]
Палеотемпературная кривая палеогена (05-20 млн. лет назад) для Южной Атлантики [Shackleton, 1986]

Сравнительно недавние исследования ученых по-новому осветили проблему образования оледенения, по крайней мере самого последнего, остатки которого сохраняются на нашей планете и сейчас. В морях, непосредственно примыкающих к Антарктиде, изучались донные отложения, что позволило определить признаки появления ледников и айсбергов.

Посмотрим, какой же в свете полученных данных представляется эволюция природы в районе Антарктиды на протяжении последних актов геологической истории Земли. Сейчас твердо установлено, что Антарктическая суша заняла свое теперешнее положение па крайнем юге нашей планеты уже в конце мелового периода (70-65 млн лет назад). Однако длительное время на этом континенте не было ледников. Они появились позднее вследствие серьезных изменений географической обстановки. На протяжении палеоцена Антарктида, Австралия и Южная Америка образовывали единый массив суши. Течения из тропических широт свободно проникали к этому огромному континенту и обогревали его своим теплом.

В раннем эоцене, приблизительно 53 млн лет назад, Австралия отделилась от Антарктиды и начала медленно двигаться к северу. Между двумя материками образовалась полоса воды. Она все более расширялась и со временем превратилась в Тасманово море. На протяжении эоцена климат в районе южных морей был все еще достаточно теплым. Тропические течения беспрепятственно несли тепло на юг. Холодные течения, образовывавшиеся в высоких широтах, встречали на своем пути преграду - Южно-Тасманово поднятие, соединявшее Австралию и Антарктиду с Южной Америкой, и отклонялись в более теплые районы. Данные палеотемпературных анализов показывают, что в эоцене температура воды в южных морях была достаточно высокой - около 19° в начале эоцена и 11° С в конце. Ледники на территории Антарктиды были лишь в наиболее гористых районах на западе континента.

Резкое изменение климатической обстановки на территории Антарктиды произошло 38 млн лет назад. В то время, по-видимому, впервые на Южном континенте установились условия оледенения: ледники достигли поверхности воды, лед разносился прибрежными водами, формировались холодные придонные течения, охлажденная вода выносилась в умеренные широты. Охлаждению Южного континента способствовал продолжавшийся отход Австралии от Антарктиды. Барьер в Тасмановом море исчез; на его месте располагался обширный морской бассейн, по которому циркулировали холодные воды.

Холодные течения, уходившие далеко на север, вызвали повсеместное охлаждение океана в различных частях Атлантики. Как показывают палеотемпературные расчеты, придонные воды в тропической зоне Тихого океана стали холоднее не менее чем на 5°, приблизившись к современным значениям. По оценке специалистов, температура воды в океане резко понизилась за 100 тыс. лет - срок весьма короткий по геологическим масштабам.

Следующее крупное событие в южной части планеты - образование пролива Дрейка за счет погружения суши, связывавшей Антарктиду с Южной Америкой. Точно датировать это событие не удалось: судя по геофизическим данным, в основном палеомагнитным, погружение произошло 30-22 млн лет назад. Это событие привело к коренной перестройке схемы циркуляции вод в Мировом океане. Вокруг Антарктиды сформировалось круговое холодное течение. Оно как бы отрезало южные моря от согревающего влияния тропических вод. Климат Антарктиды становился все более холодным. В морях, температура поверхностных вод которых опустилась до 7°С, появилось огромное количество айсбергов.

После некоторого увеличения значения температур в раннем миоцене наступило резкое похолодание в среднем миоцене (14-10 млн лет назад). В то время на территории Антарктиды образовалось покровное оледенение, существующее и до настоящего времени.

предыдущая главасодержаниеследующая глава







© GEOMAN.RU, 2001-2021
При использовании материалов проекта обязательна установка активной ссылки:
http://geoman.ru/ 'Физическая география'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь