НОВОСТИ    БИБЛИОТЕКА    ЭНЦИКЛОПЕДИЯ    ССЫЛКИ    КАРТА САЙТА    О САЙТЕ  







Народы мира    Растения    Лесоводство    Животные    Птицы    Рыбы    Беспозвоночные   

предыдущая главасодержаниеследующая глава

Борьба между ионизацией и рекомбинацией

В принципе все происходит относительно просто. Солнечное излучение в ультрафиолетовой и рентгеновской частях спектра воздействует на нейтральные частицы верхней атмосферы. Происходит процесс ионизации, т. е. электрон отрывается от нейтрального атома или молекулы. Из нейтральной частицы образуются две заряженные: положительная - ион и отрицательная - электрон. В обычных физических символах это записывается так:

Процесс ионизации. Формула (3)
Процесс ионизации. Формула (3)

Здесь X - нейтральная частица, на которую воздействует излучение (квант излучения обозначается hν); X+ - получившийся из X положительный ион и е - отрицательно заряженная частица - электрон.

Для того чтобы произошел процесс (3), надо затратить некоторую энергию. Наименьшая энергия, при которой данная частица X может быть ионизирована, называется потенциалом ионизации данной частицы. Мы будем обозначать потенциал ионизации буквой V и выражать в электронвольтах. Очевидно, что не всякое излучение может вызывать ионизацию. Оторвать электрон от частицы X можно, лишь воздействуя на нее излучением, квант которого hv несет энергию, не меньшую, чем Vх (X показывает, что имеется в виду потенциал ионизации именно частицы X). Длина волны λ (или частота ν), для которой справедливо равенство hν=Vx, называется порогом ионизации частицы X.

Если бы в атмосфере действовал только процесс (3), заряженные частицы накапливались бы непрерывно и концентрация ионов и электронов (будем обозначать ее [Х+] и [е]) бесконечно возрастала бы. Но реально этого, конечно, не наблюдается. Как только образовалось некоторое заметное количество Х+ и е, начинается обратный (по отношению к ионизации (3)) процесс - соединение положительного иона с электроном, приводящее к восстановлению нейтральной частицы, "погибшей" в результате реакции (3):

Врезультате реакции (3) получается формула (4)
Врезультате реакции (3) получается формула (4)

Такой процесс называется рекомбинацией.

На тех высотах, где динамические процессы отсутствуют или их влияние мало, два противоборствующих процесса - ионизация (3) и рекомбинация (4) - определяют количество заряженных частиц, т. е. строение ионосферы. Так обстоит дело в принципе.

На самом деле за каждой из реакций (3) и (4) стоит целый набор различных реакций ионизации и рекомбинации с образованием и исчезновением разных ионов. Кроме того, между реакциями (3) и (4) появляется еще промежуточный процесс - ионно-молекулярные реакции, в которых заряженные частицы не рождаются и не гибнут, а лишь преобразуются друг в друга. Весь этот набор реакций с участием различных ионов и составляет основу фотохимии ионосферы. История же ионосферной физики за последние 15 - 20 лет есть в основном история построения и изучения этого комплекса процессов.

Как от простой схемы двух процессов типа (3) и (4), так называемого слоя Чепмена, перешли к более сложным схемам, в каком столкновении мнений, борьбе идей рождалось представление о всей совокупности реакций ионизации и рекомбинации (так называемом ионизационно-рекомбинационном цикле процессов) - обо всем этом можно прочесть в книге автора "Химия, атмосфера и космос". Здесь мы постараемся рассказать, как выглядит современная схема ионосферной фотохимии и какие особенности поведения ионосферы эта схема может объяснить.

Свое рассмотрение мы начнем с самой простой области ионосферы, расположенной на высотах 100 - 200 км. Эта область считается простой по нескольким причинам. Во-первых, выше 100 км заведомо нет отрицательных ионов, а они, как мы увидим в главе 5, крайне усложняют ионизационно-рекомбинационный цикл. Во-вторых, один из важнейших динамических процессов - амбиполярная диффузия - начинает серьезно вмешиваться в дела ионов и электронов лишь выше 200 км, а в интересующей нас сейчас области она нам никаких неприятностей причинить не может. Третье преимущество указанной области - доступность ее для небольших геофизических и метеорологических ракет. А такие ракеты поставляют весьма ценные экспериментальные данные. В итоге нам есть с чем сравнивать выводы теории. Мы можем эту теорию контролировать и уточнять по надежным данным наблюдений.

В результате всех этих причин область высот 100 - 200 км (будучи сама по себе значительной и важной частью ионосферы стала чем-то вроде полигона для проверки и отработки фотохимической теории образования ионизации в атмосфере. Построенная для высот 100 - 200 км фотохимия применяется затем и к большим высотам (скажем, область максимума слоя F2), где приходится "мирить" ее с динамическими процессами, и к области D, где на нее накладывается специфика отрицательных ионов и ионов-связок.

предыдущая главасодержаниеследующая глава







© GEOMAN.RU, 2001-2021
При использовании материалов проекта обязательна установка активной ссылки:
http://geoman.ru/ 'Физическая география'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь