Эти бесчисленные вариации...
Как следует из предыдущего параграфа, общая картина изменения плотности и состава атмосферы с высотой нам теперь ясна. Но общей картины еще не достаточно. Для практических целей необходимы конкретные цифры. Мало знать, что атомный кислород является основной компонентой атмосферы, скажем, на высоте 300 км. Нужно знать, сколько атомов О в кубическом сантиметре газа там имеется. И сколько молекул N2. Иначе говоря, каково отношение [0]/[N2].
Выясняется, что ответить на эти вопросы в общем нельзя. Необходимо указать точно, в каких условиях: в какой сезон, в какое время суток, на какой широте, при какой активности Солнца и магнитной активности. Вот, оказывается, сколько различных факторов влияет на изменение нейтрального состава верхней атмосферы!
Но мало понимать, что они влияют. Надо еще знать - как. Сегодня главная проблема строения верхней атмосферы - как и в зависимости от каких внешних факторов изменяются ее основные параметры (плотность, температура и состав) на каждой высоте.
Проблема эта очень сложна, и, поскольку она находится в стадии решения, нет недостатка в противоречивых данных, не до конца обоснованных предложениях и недоказанных заключениях. Рассмотрим поэтому здесь картину вариаций атмосферных параметров лишь в самом общем виде.
Какие же факторы могут (или должны) влиять на состояние нейтрального газа верхней атмосферы на данной высоте?
Прежде всего, очевидно, время суток. Ведь освещенность атмосферы Солнцем зависит главным образом от этого параметра. А Солнце - основной поставщик энергии, поступающей в атмосферу. По этой же причине следует ожидать и изменения состояния верхней атмосферы с изменением солнечной активности. И все с тем же Солнцем связана зависимость параметров верхней атмосферы от сезона - ведь освещенность зимнего полушария много меньше, чем летнего. Эта зависимость дает так называемые годовые вариации, скажем, максимум зимой, минимум летом или наоборот.
Далеко не так очевидна причина появления "полугодовых" вариаций, дающих максимумы в периоды равноденствий, а минимумы в периоды солнцестояний (или наоборот). Тем не менее из экспериментов известно, что такие вариации существуют.
Наконец, верхняя атмосфера должна реагировать на различные возмущения, прежде всего геомагнитные, поэтому говорят о вариациях атмосферных параметров с магнитной активностью.
Давайте посмотрим, что же известно сегодня о влиянии всех этих факторов на плотность, температуру и состав верхней атмосферы, опуская детали и спорные вопросы.
Плотность атмосферы на высотах, больших 120 - 150 км, различна днем и ночью. Днем она больше - максимум g в суточном ходе наступает около 14 - 16 часов местного времени. Если бы мы могли посмотреть на Землю из космоса и при этом увидеть верхнюю атмосферу, мы обнаружили бы, что последняя несимметрична: чуть восточнее подсолнечного меридиана (меридиана, где сейчас полдень) вся атмосфера слегка выпучена - наблюдается вздутие. В аэрономии так и говорят: "дневное вздутие атмосферы". Насколько атмосфера вздута (т. е. каково отношение плотности g в максимуме и минимуме суточной кривой) и на какое точно местное время приходится максимальное вздутие - это вопросы сложные и выходящие за рамки нашего изложения. Заметим только, что, по современным представлениям, параметры вздутия сами зависят от нескольких факторов - широты, сезона, солнечной активности.
Глядя на Землю извне, мы обнаружим, что верхняя атмосфера несимметрична и вдоль меридиана. Характер широтного распределения g зависит от сезона и времени суток. Например, в период равноденствия днем плотность от экватора к средним широтам будет спадать, а ночью, наоборот, расти. При этом ночью в широтном ходе g могут наблюдаться один или два минимума - в районе экватора и на широте около 70°.
Зависимость плотности от солнечной активности в целом известна, пожалуй, лучше всего. Упрощенно ее можно сформулировать так: чем выше активность, тем выше плотность, и чем больше высота, тем амплитуда этого изменения больше. (Так, на высоте 150 км среднее значение g меняется от максимума к минимуму солнечного цикла на 10 - 20%, а на высоте 400 км g изменяется уже в несколько раз.) Но, конечно, наличие других вариаций, и прежде всего суточных и сезонных, существенно усложняет нарисованную простую картину.
Больше всего дебатов вызвала изменчивость плотности верхней атмосферы в течение года. Какие вариации преобладают в годовом ходе g - годовые или полугодовые? Когда плотность на заданной высоте больше - зимой или летом?
На первый вопрос однозначно ответить, видимо, нельзя. Оба типа вариаций накладывают свой отпечаток на кривую изменения g в течение года, причем относительный вклад годовой и полугодовой составляющих меняется с высотой, уровнем активности и т. д. В среднем на этой кривой наблюдаются два максимума в периоды около равноденствий и два минимума, соответствующие дням солнцестояния. Однако значения этих минимумов различны. Зимой - самые низкие за год. Это и есть годовой минимум д. Летние значения соответственно выше, причем разница, видимо, растет с высотой. Это ответ на наш второй вопрос о соотношении g зимой и летом.
Наконец, плотность верхней атмосферы не остается безразличной к возмущениям геомагнитного поля. После сильных магнитных бурь на высотах 300 - 400 км несколько раз наблюдали увеличение g в 1,5-2 раза. Однако это явление отмечается не всегда и не на всех широтах. Точный ответ на вопрос о том, как отзывается плотность верхней атмосферы на различные возмущения, еще предстоит найти.
Сложным образом изменяется в зависимости от условий и температура верхней атмосферы. Обычно вариации температуры рассматривают в области изотермии (выше 150 - 160 км), где она считается постоянной и обозначается T∞. Часто ее называют температурой экзосферы.
Наиболее четко зависит температура экзосферы от солнечной и магнитной активности. Существуют эмпирические формулы, по которым можно найти T∞ для данного момента времени, зная значение потока радиоизлучения Солнца Р10 для этого момента и среднюю величину Р10 за солнечный цикл.
Аналогично установлена достаточно надежная эмпирическая связь между приростом T∞ во время магнитных бурь и величиной планетарного геомагнитного индекса КР.
Суточные вариации T∞ подобны суточным вариациям плотности - максимум днем и минимум ночью. Однако время наступления максимумов на суточных кривых и T∞ не совпадает. Максимум температуры наблюдается на 0,5-1 час позже, чем максимум (вздутие) плотности. Это различие (его иногда называют фазовой аномалией суточного хода) до сих пор не имеет физического объяснения. Найти это объяснение - одна из насущных задач теоретического моделирования верхней атмосферы.
Многие детали вариаций температуры верхней атмосферы еще находятся в стадии изучения. Поскольку измерять температуру гораздо сложнее, чем плотность или нейтральный состав, количество надежных данных о поведении T∞ значительно меньше, чем, скажем, о поведении g. А потому меньше и ясность в вопросах о различных вариациях. Так, очень сложной и запутанной выглядит картина распределения T∞ по земному шару - многоплановая комбинация широтных, сезонных и суточных изменений экзосферной температуры. Надежно можно лишь утверждать, что верхняя; атмосфера в летнем полушарии всегда теплее, чем в зимнем, и что этот контраст составляет 300 - 400 К.
Трудности исследования поведения температуры в верхней атмосфере в последние годы усугубились. Долгое время использовали для определения T высотные профили той или иной нейтральной компоненты (скажем, Аr, N2, О). По профилю находили o высоту однородной атмосферы Н (т. е. скорость уменьшения данной концентрации с высотой), а по H с помощью формулы (2) легко вычисляли Г. При этом автоматически предполагалось, что температуры, найденные по профилям разных компонент, должны совпадать - в этом ведь суть барометрического закона распределения.
Однако оказалось, что это не так. В ряде случаев (особенно сильно эффект проявляется в возмущенных условиях) температуры, соответствующие вертикальному распределению разных газов (например, T∞(N2) и T∞ (О)), бывают различными. Из этого теперь, увы, установленного факта следуют по меньшей мере два огорчительных следствия. Во-первых, ясно, что нельзя определять истинную Tоо таким способом, а следовательно, надо отказаться от многих выводов и о глобальном распределении температуры, полученных, скажем, по поведению высотных профилей [N2]. Во-вторых, различие T∞ (N2) и T∞ (О) означает, что не выполняется барометрический закон и на распределение концентраций атмосферных газов действуют какие-то другие силы, связанные, видимо, с горизонтальной динамикой атмосферы.
Наибольший интерес для аэрономии представляет, несомненно, изучение вариаций нейтрального состава верхней атмосферы, т. е. абсолютных и относительных концентраций основных составляющих атмосферного газа, и в первую очередь О и N2. Как мы не раз увидим далее, именно с этими вариациями связан целый ряд важных ионосферных проблем - изменение эффективного коэффициента рекомбинации, объяснение поведения области F2 и т. д. Как и в случае с вариациями g и T∞, здесь много спорных вопросов и нерешенных проблем.
Прежде всего, говоря о вариациях состава, надо понять, как он изменяется в течение суток. Будет ли отношение [0]/[N2] на данной высоте неизменно днем и ночью и если нет, то когда оно выше? Напрашивается ответ: днем должно быть больше атомов О, так как они образуются в результате воздействия на атмосферу солнечного излучения. Но при аккуратных расчетах получается, что это не так. Время жизни атомов кислорода (см. главу 4) на высотах 100 - 200 км составляет много дней и даже недель. В этом случае концентрация О просто не успевает заметно измениться ото дня к ночи, хотя в ночное время и "выключается" солнечный источник фотодиссоциации.
Зато другой фактор должен приводить к разнице между дневным и ночным составом. Этот фактор - температура. Днем она выше, чем ночью. А чем выше Т, тем больше тяжелых молекул N2 по сравнению с легкими атомами О (см. простую формулу в начале главы). Значит, по теории диффузионного разделения днем отношение [O]/[N2] должно быть меньше, чем ночью. На этом принципе построены все теоретические модели атмосферы.
Диффузионное разделение
Однако когда попробовали сравнить измеренные на ракетах величины [O]/[N2] в разное время суток, пришли к прямо противоположному выводу: дневные значения [O]/[N2] выше ночных. В чем же дело?
Этот вопрос не решен и по сей день. Измерение атомов кислорода в верхней атмосфере с помощью масс-спектрометров связано с большими трудностями. Атомы О могут рекомбинировать на стенках прибора и регистрироваться уже как молекулы O2. В таком случае мы будем измерять меньше О и больше O2, чем есть на самом деле. Чтобы уменьшить этот эффект, в последние годы стали прибегать ко всяческим ухищрениям - делать стенки прибора из специальных материалов (например, титана), на которых атомы О рекомбинируют "неохотно", устраивать искусственное охлаждение анализатора, чтобы максимально уменьшить "подвижность" атомов, и т. д. Однако сомнения по части аккуратности ракетных измерений атомного кислорода, особенно в отношении первых экспериментов, проводившихся в 60-х годах, все еще остаются. А потому остается открытым вопрос о суточных вариациях отношения [О]/[N2].
Очень важную роль играет отношение концентраций атомов и молекул (все то же [0]/[N2]) в области F2, где расположен основной ионосферный максимум. Законы фотохимии приводят к тому (мы расскажем об этом в главе 4), что в области ионосферного максимума (250 - 300 км) равновесная концентрация электронов прямо пропорциональна этому отношению. Значит, оно непосредственно определяет состояние ионосферы.
Именно поэтому все вариации концентрации электронов в максимуме слоя F2, наблюдаемые в виде изменения критических частот этого слоя f0F2 при наземном радиозондировании ионосферы, пытались объяснять в первую очередь вариациями нейтрального состава. О проблемах, связанных с объяснением поведения области F2 изменениями нейтрального состава, мы поговорим подробно в главе 4.
Что же известно сегодня о других вариациях нейтрального состава? На высотах 300 - 400 км абсолютная концентрация атомов кислорода в течение суток меняется слабо; небольшой плоский максимум наблюдается около 14 - 15 часов. Концентрация N2 имеет более выраженные суточные вариации с максимумом около 14 часов. Наложение этих двух суточных кривых и определяет вариации общей плотности g с послеполуденным вздутием.
Хуже обстоит дело с изменением нейтрального состава в течение года. Проблема выглядит несколько по-разному для спутниковых высот (h>250 км) и высот, меньших 200 км, где измерения проводятся в основном на ракетах.
Попробовали сопоставить результаты ракетных измерений, проведенных в различное время года, и получить ход [О]/[N2] на заданной высоте. И получили... Увы, разные группы авторов получили разные результаты. Одна группа пришла к выводу, что в течение года наблюдаются один минимум (весна - лето) и один максимум (зима), т. е. существует годовая вариация отношения [О]/[N2]. Исследователи другой группы пришли к выводу, что в течение года наблюдаются два максимума (около времени весеннего и осеннего равноденствия) и два минимума (летом и зимой), т. е. существуют полугодовые вариации этого отношения.
Если для малых высот преобладающая роль годовой или полугодовой компоненты в вариациях состава до конца не ясна, то относительно спутниковых высот сомнений нет - там доминирует именно полугодовая компонента. Более четко полугодовые вариации выражены на этих высотах у концентрации О, амплитуда изменения которой может составлять 3 - 4. Абсолютные концентрации молекулярного азота таких заметных полугодовых вариаций не обнаруживают. Поскольку выше примерно 200 км [O]>[N2], полугодовые вариации атомного кислорода на спутниковых высотах проявляются и в полугодовых вариациях плотности, о которых мы уже упоминали. Здесь концы с концами сходятся.
Однако неприятности, и очень существенные, имеются и на этих высотах. В то время как ниже 200 км величины [О] и [N2] зимой выше, чем летом, на спутниках обнаружена прямо противоположная картина. Что это означает? Прежде всего, что имеется некая высота, где происходит изменение знака сезонной вариации абсолютных концентраций О и N2. Какова точно эта высота и каков механизм такого изменения, еще предстоит установить.
Преобладание зимних концентраций О над летними на высотах 300 - 400 км порождает и другую трудность. Ведь, как мы говорили выше, зимние величины плотности атмосферы всюду на высотах, больших 100 км, ниже летних. Ниже 200 км это вполне согласуется с сезонными вариациями [О] и [N2]. А вот выше... Выше получается вопиющее противоречие. Ведь основная компонента на высотах 300 - 400 км - это атомный кислород. Он-то и обеспечивает "общую" плотность атмосферы. Как же эта плотность может меняться в противофазе с [О]!
Здесь налицо явное противоречие двух групп экспериментальных данных: о q - по торможению спутников и о концентрации N2 и О - по масс-спектрометрическим измерениям. И пока это противоречие не устранено, нельзя, конечно, говорить о законченной картине вариаций параметров верхней атмосферы в течение года.
Очень важной современной проблемой строения верхней атмосферы является проблема граничных условий, или проблема турбопаузы. Мы уже говорили, что до высоты 105 - 120 км (турбопауза) атмосфера перемешана, а выше вступает в силу закон диффузионного разделения. Во многих моделях атмосферы считалось, что условия в турбопаузе неизменны (параметры атмосферы на h≈120 км брались обычно в качестве граничных условий) и не зависят от внешних факторов - сезона, солнечной и магнитной активности и т. п. В таких моделях все изменения состава верхней атмосферы происходили лишь за счет изменения температуры экзосферы и соответствующего перераспределения концентраций атомов и молекул по барометрической формуле.
Однако наблюдения последних лет показали, что характеристики турбопаузы не остаются неизменными - и абсолютные и относительные концентрации газов меняются в зависимости от условий. Не все эти вариации изучены до конца. Но уже ясно, что особенно остро реагирует состав газа на уровне турбопаузы на геомагнитные возмущения. Мы еще вернемся к этому вопросу в главе 4, говоря о поведении области F2 во время магнитных бурь.